`a`
Kinetic and Related Models (KRM)
 

Kinetic approach to deflagration processes in a recombination reaction
Pages: 259 - 276, Volume 4, Issue 1, March 2011

doi:10.3934/krm.2011.4.259      Abstract        References        Full text (370.8K)           Related Articles

Fiammetta Conforto - Dipartimento di Matematica, Università di Messina, Viale F. Stagno d'Alcontres 31 - 98166 Messina, Italy (email)
Maria Groppi - Dipartimento di Matematica, Università di Parma, V.le G.P. Usberti 53/A, 43100 Parma, Italy (email)
Roberto Monaco - Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24 - 10129 Torino, Italy (email)
Giampiero Spiga - Dipartimento di Matematica, Università di Parma, V.le G.P. Usberti 53/A, 43124 Parma, Italy (email)

1 M. Bisi, M. Groppi and G. Spiga, Flame structure from a kinetic model for chemical reactions, Kinetic and Related Models, 3 (2010), 17-34.       
2 V. C. Boffi, V. Protopopescu and G. Spiga, On the equivalence between the probabilistic, kinetic, and scattering kernel formulations of the Boltzmann equation, Physica A, 164 (1990), 400-410.       
3 C. Cercignani, "The Boltzmann Equation and its Applications,'' Springer, New York, 1988.       
4 C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'' University Press, Cambridge, 2000.       
5 S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,'' University Press, Cambridge, 1990.       
6 R. M. Colombo and A. Corli, Sonic and kinetic phase transitions with applications to Chapman–Jouguet deflagrations, Math. Meth. Appl. Sci., 27 (2004), 843-864.       
7 S. R. De Groot and P. Mazur, "Non-Equilibrium Thermodynamics,'' North-Holland, Amsterdam, 1963.       
8 W. Fickett and W. C. Davis, "Detonation, Theory and Experiment,'' Dover, New York, 1979.
9 V. Giovangigli, "Multicomponent Flow Modeling,'' Birkhäuser, Boston, 1999.       
10 I. Glassman, "Combustion,'' Academic Press, New York, 1987.
11 M. Groppi, A. Rossani and G. Spiga, Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state, J. Phys. A: Math. Gen., 33 (2000), 8819-8833.       
12 D. Jacob, "Introduction to Atmosperic Chemistry,'' University Press, Princeton, 1999.
13 L. He, Analysis of compressibility effects on Darrieus-Landau instability of deflagration wave, Europhys. Lett., 49 (2000), 576-582.
14 L. Kagan, On the transition from deflagration to detonation in narrow channels, Math. Model. Nat. Phenom., 2 (2007), 40-55.       
15 A. K. Kapila, B. J. Matkowsky and A. van Harten, An asymptotic theory of deflagrations and detonations. I. The steady solutions, SIAM J. Appl. Math., 43 (1983), 491-519.       
16 K. K. Kuo, "Principles of Combustion,'' Wiley, Hoboken (New Jersey), 2005.
17 S. B. Margolis and M. R. Baer, A singular-perturbation analysis of the burning-rate eigenvalue for a two-temperature model of deflagrations in confined porous energetic materials, SIAM J. Appl. Math., 62 (2001), 627-663.       
18 J. Menkes, On the stability of a plane deflagration wave, Proc. Roy. Soc. London. Ser. A, 253 (1959), 380-389.       
19 J. R. Mika and J. Banasiak, "Singularly Perturbed Evolution Equations with Applications to Kinetic Theory,'' World, Singapore, 1995.       
20 I. Müller, Flame structure in ordinary and extended thermodynamics, in "Asymptotic Methods in Nonlinear Wave Phenomena'' (eds. T. Ruggeri and M. Sammartino), World, Singapore, (2007), 144-153.
21 L. Pan and W. Sheng, The scalar Zeldovich-von Neumann-Doering combustion model (II) interactions of shock and deflagration, Nonlinear Analysis: Real World Applications, 10 (2009), 449-457.       
22 W. C. Sheng and D. C. Tan, Weak deflagration solutions to the simplest combustion model, Journal of Differential Equations, 107 (1994), 207-230.       
23 S. Takata and K. Aoki, Two-surface problems of a multicomponent mixture of vapors and non condensable gases in the continuum limit in the light of kinetic theory, Phys. Fluids, 11 (1999), 2743-2756.
24 S. Takata, Kinetic theory analysis of the two-surface problem of a vapor-vapor mixture in the continuum limit, Phys. Fluids, 16 (2004), 2182-2198.
25 D. H. Wagner, Existence of deflagration waves: Connection to a degenerate critical point, in "Lecture Notes in Pure and Appl. Math.," 102, Dekker, New York, (1985), 187-197.       
26 Y. Yoshizawa, Wave structures of chemically reacting gas by the kinetic theory of gases, in "Rarefied Gas Dynamics'' (ed. J.L. Potter), A.I.A.A., New York, (1977), 501-517.
27 P. Zhang and T. Zhang, The Riemann problem for scalar CJ-combustion model without convexity, Discrete and Cont. Dynamical Systems, 1 (1995), 195-206.       

Go to top