Kinetic approach to deflagration processes in a recombination reaction
Pages: 259  276,
Volume 4,
Issue 1,
March
2011
doi:10.3934/krm.2011.4.259 Abstract
References
Full text (370.8K)
Related Articles
Fiammetta Conforto  Dipartimento di Matematica, Università di Messina, Viale F. Stagno d'Alcontres 31  98166 Messina, Italy (email)
Maria Groppi  Dipartimento di Matematica, Università di Parma, V.le G.P. Usberti 53/A, 43100 Parma, Italy (email)
Roberto Monaco  Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24  10129 Torino, Italy (email)
Giampiero Spiga  Dipartimento di Matematica, Università di Parma, V.le G.P. Usberti 53/A, 43124 Parma, Italy (email)
1 
M. Bisi, M. Groppi and G. Spiga, Flame structure from a kinetic model for chemical reactions, Kinetic and Related Models, 3 (2010), 1734. 

2 
V. C. Boffi, V. Protopopescu and G. Spiga, On the equivalence between the probabilistic, kinetic, and scattering kernel formulations of the Boltzmann equation, Physica A, 164 (1990), 400410. 

3 
C. Cercignani, "The Boltzmann Equation and its Applications,'' Springer, New York, 1988. 

4 
C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'' University Press, Cambridge, 2000. 

5 
S. Chapman and T. G. Cowling, "The Mathematical Theory of NonUniform Gases,'' University Press, Cambridge, 1990. 

6 
R. M. Colombo and A. Corli, Sonic and kinetic phase transitions with applications to Chapman–Jouguet deflagrations, Math. Meth. Appl. Sci., 27 (2004), 843864. 

7 
S. R. De Groot and P. Mazur, "NonEquilibrium Thermodynamics,'' NorthHolland, Amsterdam, 1963. 

8 
W. Fickett and W. C. Davis, "Detonation, Theory and Experiment,'' Dover, New York, 1979. 

9 
V. Giovangigli, "Multicomponent Flow Modeling,'' Birkhäuser, Boston, 1999. 

10 
I. Glassman, "Combustion,'' Academic Press, New York, 1987. 

11 
M. Groppi, A. Rossani and G. Spiga, Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state, J. Phys. A: Math. Gen., 33 (2000), 88198833. 

12 
D. Jacob, "Introduction to Atmosperic Chemistry,'' University Press, Princeton, 1999. 

13 
L. He, Analysis of compressibility effects on DarrieusLandau instability of deflagration wave, Europhys. Lett., 49 (2000), 576582. 

14 
L. Kagan, On the transition from deflagration to detonation in narrow channels, Math. Model. Nat. Phenom., 2 (2007), 4055. 

15 
A. K. Kapila, B. J. Matkowsky and A. van Harten, An asymptotic theory of deflagrations and detonations. I. The steady solutions, SIAM J. Appl. Math., 43 (1983), 491519. 

16 
K. K. Kuo, "Principles of Combustion,'' Wiley, Hoboken (New Jersey), 2005. 

17 
S. B. Margolis and M. R. Baer, A singularperturbation analysis of the burningrate eigenvalue for a twotemperature model of deflagrations in confined porous energetic materials, SIAM J. Appl. Math., 62 (2001), 627663. 

18 
J. Menkes, On the stability of a plane deflagration wave, Proc. Roy. Soc. London. Ser. A, 253 (1959), 380389. 

19 
J. R. Mika and J. Banasiak, "Singularly Perturbed Evolution Equations with Applications to Kinetic Theory,'' World, Singapore, 1995. 

20 
I. Müller, Flame structure in ordinary and extended thermodynamics, in "Asymptotic Methods in Nonlinear Wave Phenomena'' (eds. T. Ruggeri and M. Sammartino), World, Singapore, (2007), 144153. 

21 
L. Pan and W. Sheng, The scalar Zeldovichvon NeumannDoering combustion model (II) interactions of shock and deflagration, Nonlinear Analysis: Real World Applications, 10 (2009), 449457. 

22 
W. C. Sheng and D. C. Tan, Weak deflagration solutions to the simplest combustion model, Journal of Differential Equations, 107 (1994), 207230. 

23 
S. Takata and K. Aoki, Twosurface problems of a multicomponent mixture of vapors and non condensable gases in the continuum limit in the light of kinetic theory, Phys. Fluids, 11 (1999), 27432756. 

24 
S. Takata, Kinetic theory analysis of the twosurface problem of a vaporvapor mixture in the continuum limit, Phys. Fluids, 16 (2004), 21822198. 

25 
D. H. Wagner, Existence of deflagration waves: Connection to a degenerate critical point, in "Lecture Notes in Pure and Appl. Math.," 102, Dekker, New York, (1985), 187197. 

26 
Y. Yoshizawa, Wave structures of chemically reacting gas by the kinetic theory of gases, in "Rarefied Gas Dynamics'' (ed. J.L. Potter), A.I.A.A., New York, (1977), 501517. 

27 
P. Zhang and T. Zhang, The Riemann problem for scalar CJcombustion model without convexity, Discrete and Cont. Dynamical Systems, 1 (1995), 195206. 

Go to top
