On a continuous mixed strategies model for evolutionary game theory
Pages: 187  213,
Volume 4,
Issue 1,
March
2011
doi:10.3934/krm.2011.4.187 Abstract
References
Full text (1533.8K)
Related Articles
Astridh Boccabella  Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Università degli Studi “Sapienza” di Roma, Italy (email)
Roberto Natalini  Istituto per le Applicazioni del Calcolo “M. Picone”, CNR, c/o Dip. di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 1; I00133 Roma, Italy (email)
Lorenzo Pareschi  Dipartimento di Matematica & CMCS, Università degli Studi di Ferrara, Italy (email)
1 
P. Abrams, Modelling the adaptive dynamics of traits involved in inter and intraspecific interactions: An assessment of three methods, Ecol. Lett., 4 (2001), 166175. 

2 
I. Bomze, Dynamical aspects of evolutionary stability, Mon. Math., 110 (1990), 189206. 

3 
D. Challet, M. Marsili and YC. Zhang, "Minority Games: Interacting Agents in Financial Markets," Oxford University Press, 2005. 

4 
R. Cressman, Stability of the replicator equation with continuous strategy space, Mathematical Social Sciences, 50 (2005), 127147. 

5 
L. Desvillettes, P.E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729747. 

6 
D. Friedman, Towards evolutionary game models of financial markets, Quantitative Finance 1, (2001) 

7 
A. Galstyan, Continuous strategy replicator dynamics for multiagent learning, arXiv:0904.4717v1. 

8 
S. Genieys, N. Bessonov and V. Volpert, Mathematical model of evolutionary branching, Mathematical and Computer Modelling, 49 (2009), 21092115. 

9 
J. Henriksson, T. Lundh and B. Wennberg, A model of sympatric speciation through reinforcement, Kinet. Relat. Models, 3 (2010), 143163. 

10 
J. Hofbauer, J. Oechssler and F. Riedel, Brownvon NeumannNash dynamics: The continuous strategy case, Games and Economic Behavior, 65 (2009), 406429. 

11 
J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, 1998. 

12 
T. W. L. Norman, Dynamically stable sets in infinite strategy spaces, Games and Economic Behavior, 62 (2008), 610627. 

13 
J. Oechssler and F. Riedel, Evolutionary dynamics on infinite strategy spaces, Econ. Theory, 17 (2001), 141162. 

14 
M. Ruijgrok and T. W. Ruijgrok, Replicator dynamics with mutations for games with a continuous strategy space, arXiv:nlin/0505032v2. 

15 
J. W. Weibull, "Evolutionary Game Theory," MIT Press, Cambridge, MA, 1995. 

Go to top
