Kinetic and Related Models (KRM)

On a continuous mixed strategies model for evolutionary game theory
Pages: 187 - 213, Volume 4, Issue 1, March 2011

doi:10.3934/krm.2011.4.187      Abstract        References        Full text (1533.8K)           Related Articles

Astridh Boccabella - Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Università degli Studi “Sapienza” di Roma, Italy (email)
Roberto Natalini - Istituto per le Applicazioni del Calcolo “M. Picone”, CNR, c/o Dip. di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 1; I-00133 Roma, Italy (email)
Lorenzo Pareschi - Dipartimento di Matematica & CMCS, Università degli Studi di Ferrara, Italy (email)

1 P. Abrams, Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: An assessment of three methods, Ecol. Lett., 4 (2001), 166-175.
2 I. Bomze, Dynamical aspects of evolutionary stability, Mon. Math., 110 (1990), 189-206.       
3 D. Challet, M. Marsili and Y-C. Zhang, "Minority Games: Interacting Agents in Financial Markets," Oxford University Press, 2005.
4 R. Cressman, Stability of the replicator equation with continuous strategy space, Mathematical Social Sciences, 50 (2005), 127-147.       
5 L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729-747.       
6 D. Friedman, Towards evolutionary game models of financial markets, Quantitative Finance 1, (2001)       
7 A. Galstyan, Continuous strategy replicator dynamics for multi-agent learning, arXiv:0904.4717v1.
8 S. Genieys, N. Bessonov and V. Volpert, Mathematical model of evolutionary branching, Mathematical and Computer Modelling, 49 (2009), 2109-2115.       
9 J. Henriksson, T. Lundh and B. Wennberg, A model of sympatric speciation through reinforcement, Kinet. Relat. Models, 3 (2010), 143-163.       
10 J. Hofbauer, J. Oechssler and F. Riedel, Brown-von Neumann-Nash dynamics: The continuous strategy case, Games and Economic Behavior, 65 (2009), 406-429.
11 J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, 1998.       
12 T. W. L. Norman, Dynamically stable sets in infinite strategy spaces, Games and Economic Behavior, 62 (2008), 610-627.       
13 J. Oechssler and F. Riedel, Evolutionary dynamics on infinite strategy spaces, Econ. Theory, 17 (2001), 141-162.       
14 M. Ruijgrok and T. W. Ruijgrok, Replicator dynamics with mutations for games with a continuous strategy space, arXiv:nlin/0505032v2.
15 J. W. Weibull, "Evolutionary Game Theory," MIT Press, Cambridge, MA, 1995.       

Go to top