`a`
Kinetic and Related Models (KRM)
 

Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type
Pages: 1 - 16, Volume 4, Issue 1, March 2011

doi:10.3934/krm.2011.4.1      Abstract        References        Full text (1140.4K)           Related Articles

Martial Agueh - Department of Mathematics and Statistics, University of Victoria, PO BOX 3060 STN CSC, Victoria, BC V8W 3R4, Canada (email)
Reinhard Illner - Department of Mathematics and Statistics, University of Victoria, PO BOX 3060 STN CSC, Victoria, BC V8W 3R4, Canada (email)
Ashlin Richardson - Department of Mathematics and Statistics, University of Victoria, PO BOX 3060 STN CSC, Victoria, BC V8W 3R4, Canada (email)

1 L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158 (2004), 227-260.       
2 I. Aoki, A simulation study on the schooling mechanism in fish, Bulletin of the Japanese Society of Scientific Fisheries, 48 (1982), 1081-1088.
3 M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behaviour depends on topological rather than metric distance: Evidence from a field study, Preprint, arXiv:0709.1916v1.
4 F. Bouchut and F. James, One-dimensional transport equation with discontinuous coefficients, Nonlinear Anal., 32 (1998), 891-933       
5 J. A. Canizo, J. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod. Meth. Appl. Sci. (to appear), arXiv:0907.3901v2.
6 J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinetic and Related Models, 2 (2009), 363-378.       
7 J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-219.       
8 J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in G. Naldi, L. Pareshi and G. Toscani (eds). Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Series Modelling and Simulation in Science and Technology, Birkha\"user (2010), 297-336.
9 J. A. Carrillo, A. Klar, S. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Mod. Meth. Appl. Sci., 20 (2010), 1533-1552.
10 I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N. Franks, Collective memory and spatial sorting in animal groups, J. Theor. Biol., 218 (2002), 1-11.       
11 F. Cucker and S. Smale, On the mathematics of emergence, Japan J. Math., 2 (2007), 197-227.       
12 F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control., 52 (2007), 852-862.       
13 P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Mod. Meth. Appl. Sci., 18 (2008), 1193-1215.       
14 R. Dobrushin, Vlasov equations, Funct. Anal. Appl., 13 (1979), 115-123.       
15 V. V. Filippov, On the theory of the Cauchy problem for an ordinary differential equation with discontinuous right-hand side, Russ. Acad. Sci. Sb. Math., 383 (1995).       
16 H. Hildenbrandt, C. Carere and C. K. Hemelrijk, Self-organized aerial displays of thousands of starlings: A model, Behavioral Ecology (to appear).
17 C. K. Hemelrijk and H. Hildenbrandt, Self-organized shape pand frontal density of fish schools, Ethology, 114 (2008), 245-254.
18 C. K. Hemelrijk and H. Kunz, Density distribution and size sorting in fish schools: An individual-based model, Behavioral Ecology, 16 (2005), 178-187.
19 H. Huth and C. Wissel, The simulation of the movement of fish schools, J. Theor. Biol., 156 (1992), 365-385.
20 H. Kunz and C. K. Hemelrijk, Artificial fish schools: Collective effects of school size, body size, and body form, Artificial Life, 9 (2003), 237253.
21 M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi and L. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability and collapse, Phys. rev. Lett., 96 (2006), 104302-1/4.
22 S-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.       
23 S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamics description of flocking, Kinetic and Related models, 1 (2008), 415-435.       
24 H. Levine, W.-J. Rappel and I. Cohen, Self-organization in systems of self-propelled particles, Phys. Rev. Lett. E., 63 (2000), 017101-1/4.
25 R. Lukeman, Y. X. Li and L. Edelstein-Keshet, A conceptual model for milling formations in bilological aggregates, Bull Math Biol., 71 (2008), 352-382.
26 R. Lukeman and L. Edelstein-Keshet, Minimal mechanisms for school formation in self-propelled particles, Physica D., 237 (2008), 699-720.
27 P. D. Miller, "Applied Asymptotic Analysis," Graduate Studies in Math, 75 (2006), AMS.       
28 H. Neunzert, The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles, Trans. Fluid Dynamics, 18 (1997), 663-678.
29 H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, In: "Kinetic Theories and the Boltzmann Equation" (Montecatini 1981), Lecture Notes in Math., Springer Verlag Berlin, (1984), 60-110.       
30 J. Parrish and L. Edelstein-Keshet, Complexity, pattern, and evolutionary trade-offs in animal aggregation, Science, 294 (1999), 99-101.
31 J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Physical Review E., 58 (1998), 4828-2858.
32 T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
33 C. Villani, "Topics in Optimal Transportation," Graduate Studies in Math., 58 (2003), AMS.       

Go to top