Analysis and simulations of a refined flocking and swarming model of CuckerSmale type
Pages: 1  16,
Volume 4,
Issue 1,
March
2011
doi:10.3934/krm.2011.4.1 Abstract
References
Full text (1140.4K)
Related Articles
Martial Agueh  Department of Mathematics and Statistics, University of Victoria, PO BOX 3060 STN CSC, Victoria, BC V8W 3R4, Canada (email)
Reinhard Illner  Department of Mathematics and Statistics, University of Victoria, PO BOX 3060 STN CSC, Victoria, BC V8W 3R4, Canada (email)
Ashlin Richardson  Department of Mathematics and Statistics, University of Victoria, PO BOX 3060 STN CSC, Victoria, BC V8W 3R4, Canada (email)
1 
L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158 (2004), 227260. 

2 
I. Aoki, A simulation study on the schooling mechanism in fish, Bulletin of the Japanese Society of Scientific Fisheries, 48 (1982), 10811088. 

3 
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behaviour depends on topological rather than metric distance: Evidence from a field study, Preprint, arXiv:0709.1916v1. 

4 
F. Bouchut and F. James, Onedimensional transport equation with discontinuous coefficients, Nonlinear Anal., 32 (1998), 891933 

5 
J. A. Canizo, J. A. Carrillo and J. Rosado, A wellposedness theory in measures for some kinetic models of collective motion, Math. Mod. Meth. Appl. Sci. (to appear), arXiv:0907.3901v2. 

6 
J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in selfpropelled swarms from kinetic theory, Kinetic and Related Models, 2 (2009), 363378. 

7 
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic CuckerSmale model, SIAM J. Math. Anal., 42 (2010), 218219. 

8 
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in G. Naldi, L. Pareshi and G. Toscani (eds). Mathematical Modeling of Collective Behavior in SocioEconomic and Life Sciences, Series Modelling and Simulation in Science and Technology, Birkha\"user (2010), 297336. 

9 
J. A. Carrillo, A. Klar, S. Martin and S. Tiwari, Selfpropelled interacting particle systems with roosting force, Math. Mod. Meth. Appl. Sci., 20 (2010), 15331552. 

10 
I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N. Franks, Collective memory and spatial sorting in animal groups, J. Theor. Biol., 218 (2002), 111. 

11 
F. Cucker and S. Smale, On the mathematics of emergence, Japan J. Math., 2 (2007), 197227. 

12 
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control., 52 (2007), 852862. 

13 
P. Degond and S. Motsch, Continuum limit of selfdriven particles with orientation interaction, Math. Mod. Meth. Appl. Sci., 18 (2008), 11931215. 

14 
R. Dobrushin, Vlasov equations, Funct. Anal. Appl., 13 (1979), 115123. 

15 
V. V. Filippov, On the theory of the Cauchy problem for an ordinary differential equation with discontinuous righthand side, Russ. Acad. Sci. Sb. Math., 383 (1995). 

16 
H. Hildenbrandt, C. Carere and C. K. Hemelrijk, Selforganized aerial displays of thousands of starlings: A model, Behavioral Ecology (to appear). 

17 
C. K. Hemelrijk and H. Hildenbrandt, Selforganized shape pand frontal density of fish schools, Ethology, 114 (2008), 245254. 

18 
C. K. Hemelrijk and H. Kunz, Density distribution and size sorting in fish schools: An individualbased model, Behavioral Ecology, 16 (2005), 178187. 

19 
H. Huth and C. Wissel, The simulation of the movement of fish schools, J. Theor. Biol., 156 (1992), 365385. 

20 
H. Kunz and C. K. Hemelrijk, Artificial fish schools: Collective effects of school size, body size, and body form, Artificial Life, 9 (2003), 237253. 

21 
M. R. D'Orsogna, Y.L. Chuang, A. L. Bertozzi and L. Chayes, Selfpropelled particles with softcore interactions: Patterns, stability and collapse, Phys. rev. Lett., 96 (2006), 1043021/4. 

22 
SY. Ha and J.G. Liu, A simple proof of the CuckerSmale flocking dynamics and meanfield limit, Commun. Math. Sci., 7 (2009), 297325. 

23 
S.Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamics description of flocking, Kinetic and Related models, 1 (2008), 415435. 

24 
H. Levine, W.J. Rappel and I. Cohen, Selforganization in systems of selfpropelled particles, Phys. Rev. Lett. E., 63 (2000), 0171011/4. 

25 
R. Lukeman, Y. X. Li and L. EdelsteinKeshet, A conceptual model for milling formations in bilological aggregates, Bull Math Biol., 71 (2008), 352382. 

26 
R. Lukeman and L. EdelsteinKeshet, Minimal mechanisms for school formation in selfpropelled particles, Physica D., 237 (2008), 699720. 

27 
P. D. Miller, "Applied Asymptotic Analysis," Graduate Studies in Math, 75 (2006), AMS. 

28 
H. Neunzert, The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles, Trans. Fluid Dynamics, 18 (1997), 663678. 

29 
H. Neunzert, An introduction to the nonlinear BoltzmannVlasov equation, In: "Kinetic Theories and the Boltzmann Equation" (Montecatini 1981), Lecture Notes in Math., Springer Verlag Berlin, (1984), 60110. 

30 
J. Parrish and L. EdelsteinKeshet, Complexity, pattern, and evolutionary tradeoffs in animal aggregation, Science, 294 (1999), 99101. 

31 
J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Physical Review E., 58 (1998), 48282858. 

32 
T. Vicsek, A. Czirok, E. BenJacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of selfdriven particles, Phys. Rev. Lett., 75 (1995), 12261229. 

33 
C. Villani, "Topics in Optimal Transportation," Graduate Studies in Math., 58 (2003), AMS. 

Go to top
