Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics
Pages: 199  222,
Volume 8,
Issue 1,
January
2011
doi:10.3934/mbe.2011.8.199 Abstract
References
Full text (1519.5K)
Related Articles
Karen R. RíosSoto  Department of Mathematical Sciences, University of Puerto RicoMayagüez, Mayagüez, PR 00686, United States (email)
Baojun Song  Department of Mathematical Sciences, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States (email)
Carlos CastilloChavez  Mathematical, Computational and Modeling Science Center, School of Mathematics and Statistic, Arizona State University, Tempe, AZ 85287, United States (email)
1 
S. Blythe, C. CastilloChavez and S. Palmer, Toward a unified theory of sexual mixing and pair formation, Math. Biosci., 107 (1991), 379405. 

2 
S. Blythe, S. Busenberg and C. CastilloChavez, Affinity in paired event probability, Math. Biosci., 128 (1995), 265284. 

3 
A. C. M. Boon, M. R. Sandbulte, P. Seiler, R. J. Webby, T. Songserm, Y. Guan and R. G. Webster, Role of terrestrial wild birds in ecology of influenza A virus (H5N1), Emerg. Infect. Dis., 13 (2007), 17201724. 

4 
A. Bouma, I. Claassen, K. Naith, D. Klinkenberg, C. A. Donnelly, G. Koch and M. van Boven, Estimation of transmission parameters of H5N1 avian influenza virus in chickens, PLoS Path., 5 (2009), 113. 

5 
S. Busenberg and C. CastilloChavez, A general solution of the problem of mixing of subpopulations and its application to risk and agestructured epidemic models for the spread of AIDS, IMA J. Math. Appl. Med. Biol., 8 (1991), 129. 

6 
D. Butler, Doubts hang over source of bird flu spread, Nature, 439 (2006), 772. 

7 
Center for Disease Control and Prevention, (2006a). Key facts about avian influenza (bird flu) and avian influenza A (H5N1) virus, http://www.cdc.gov/flu/avian/geninfo/facts.htm. 

8 
C. CastilloChavez, K. Cooke, W. Z. Huang and S. A. Levin, The role of long periods of infectiousness in the dynamics of acquired immunodeficiency syndrome (AIDS), Mathematical approaches to problems in resource management and epidemiology (Ithaca, NY, 1987), Lecture Notes in Biomath. 8, Springer, Berlin, (1989), 177189. 

9 
C. CastilloChavez, A. Capurro, Z. Zellner and J. X. VelascoHernandez, El transporte publico y la dinamica de la tuberculosis a nivel poblacional, Aportaciones Matematicas, Serie Comunicaciones, 22 (1998), 209225. 

10 
C. CastilloChavez, Z. Feng and W. Huang, On the computation of $R_0$ and its role in global stability, In: Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduciton, C. CastilloChavez, with S. Blower, P. van den Driessche, D. Kirschner and A.A. Yakubu (eds.), Springer, (2002), 229250. 

11 
C. CastilloChavez, B. Song and J. Zhang, An epidemic model with virtual mass transportation: The case of smallpox in a large city, In: Bioterrorism: Mathematical Modeling Applications in Homeland Security, H. T. Banks and C. CastilloChavez (eds.) SIAM Frontiers in Applied Mathematics, (2003), 173197. 

12 
C. CastilloChavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361404. 

13 
Center for Disease Control (Accessed 2009a), Key facts about Swine flu, http://www.cdc.gov/h1n1flu/key_facts.htm. 

14 
Center for Disease Control (Accessed 2009b), Questions and answers: H1N1 Flu (Swine Flu) and you. http://www.cdc.gov/h1n1flu/qa.htm. 

15 
H. Chen, G. J. D. Smith, S. Y. Zhang, K. Qin, J. Wang, K. S Li, R. G. Webster, J. S. M. Peiris and Y. Guan, H5N1 virus outbreak in migratory waterfowl, Nature, 436 (2005), 191192. 

16 
H. Chen et al., Establishment of multiple sublineages of H5N1 influenza virus in Asia: Implications for pandemic control, PNAS, 103 (2006), 28452850. 

17 
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous population, J. Math. Biol., 28 (1990), 365382. 

18 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosc., 180 (2002), 2948. 

19 
Federation of American Scientists (Accessed 2009), 1918 influenza A (H1N1) fact sheet, http://www.fas.org/programs/ssp/bio/factsheets/H1N1factsheet.html 

20 
Food and Agricultural Organization of the United Nations (2005), FAO AIDE news special issue. Update on avian influenza situation, (As of 12/11/2005)  Issue no. 36, 17. 

21 
Food and Agricultural Organization of the United Nations (Accessed 2006), Animal health special report, wild birds and avian influenza, 15. http://www.fao.org/ag/againfo/subjects/en/health/diseasescards/avian_HPAIrisk.html. 

22 
M. Friend and C. J. Franson, Avian Influenza, In: Field Manual of Wildlife Diseases: General Field Procedures and Diseases of Birds., U.S. Dept. of the Interior, U.S. Geological Survey, Washington D.C., (1999), 181184. 

23 
S. Gourley, R. Liu and J. Wu, Spatiotemporal distributions of migratory birds: Patchy models with delay, SIAM Journal on Applied Dynamical Systems, 9 (2010), 589610. 

24 
F. Hoppensteadt, Asymptotic stability in singular perturbation problems. II. Problems having matched asymptotic expansion solutions, J. Diff. Eqns., 15 (1974), 510521. 

25 
W. Z. Huang, K. L. Cooke and C. CastilloChavez, Stability and bifurcation for a multiplegroup model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math., 52 (1992), 835854. 

26 
I. Iglesias, A. M. Perez., J. M. SánchezVizcaíno, M. J. Muñoz, M. Martínez and A. De La Torre, Reproductive ratio for the local spread of highly pathogenic avian influenza in wild bird populations of Europe, 20052008, Epidemiol. Infect., 14 (2010), 16. 

27 
J. A. Jacquez, C. P. Simon, J. Koopman, L. Sattenspiel and T. Perry, Modeling and analyzing HIV transmission: The effect of contact patters, Math. Biosci., 92 (1988), 119199. 

28 
H. K. Leong, C. S. Goh, S. T. Chew et al. Prevention and control of avian influenza in Singapore, Ann. Acad. Med. Singap., 37 (2008), 504509. 

29 
J. Liu et al., Highly pathogenic H5N1 influenza virus infection in migratory birds, Science, 309 (2005), 1206. 

30 
R. Liu, V. R. S. K. Duvvuri and J. Wu, Spread pattern formation of H5N1avian influenza and its implications for control strategies, Math. Model. Nat. Phenom., 3 (2008), 161179. 

31 
D. Normile, Are wild birds to blame?, Science, 310 (2005), 426428. 

32 
D. Normile, Evidence points to migratory birds in H5N1 spread, Science, 311 (2006), 1225. 

33 
B. Olsen, V. J. Munster, A. Wallensten, J. Waldenstrom, A. D. M. E. Osterhaus and R. O. M. Fouchier, Global patterns of influenza A virus in wild birds, Science, 312 (2006), 384388. 

34 
K. D. Redd, J. K. Meece, J. S. Henkel and S. K. Shukla, Birds, migration and emerging zoonoses: West Nile virus, lyme diseases, influenza A and enteropathongens, Clinical Medicine and Research, 1 (2003), 512. 

35 
K. R. RíosSoto, "Dispersal and Disease Dynamics in Populations with and without Demography,'' Ph.D. thesis, Cornell University, 2008. 

36 
C. P. Simon and J. A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations, SIAM J. Appl. Math., 52 (1992), 541576. 

37 
B. Song, C. CastilloChavez and J. P. Aparicio, Tuberculosis models with fast and slow dynamics: The role of close and casual contacts, Math. Biosci., 180 (2002), 187205. 

38 
World Health Organization (2005), Avian influenza frequently asked questions, http://www.who.int/csr/disease/avian_influenza/avian_faqs/en/index.html. 

Go to top
