Journal of Modern Dynamics (JMD)

New cases of differentiable rigidity for partially hyperbolic actions: Symplectic groups and resonance directions
Pages: 585 - 608, Issue 4, October 2010

doi:10.3934/jmd.2010.4.585      Abstract        References        Full text (295.5K)           Related Articles

Zhenqi Jenny Wang - Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States (email)

1 M. Brin and Y. Pesin, Partially hyperbolic dynamical systems, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212.       
2 D. Damjanović and A. Katok, Periodic cycle functionals and Cocycle rigidity for certain partially hyperbolic $\RR^k$ actions, Discr. Cont. Dyn. Syst., 13 (2005), 985-1005.       
3 D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl Chamber flows on on $\SL(n,\RR)/\Gamma$, Int. Math. Res. Notes, 2010, to appear.
4 D. Damjanovi$\acutec$, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Modern Dyn., 1 (2007), 665-688.       
5 Vinay V. Deodhar, On central extensions of rational points of algebraic groups, Amer. J. Math., 100 (1978), 303-386.       
6 A. J. Hahn and O. T. O'Meara, The classical groups and K-theory, Springer Verlag, Berlin, 1980, 55-58.       
7 S. Helgason, "Differential Geometry, Lie Groups, and Symmetric Spaces," Corrected reprint of the 1978 original, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001.       
8 M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,'' Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.       
9 B. Kalinin and R. Spatzier, On the classification of Cartan actions, Geom. Funct. Anal., 17 (2007), 468-490.       
10 B. Kalinin and A. Katok, Invariant measures for actions of higher-rank abelian groups, Smooth Ergodic Theory and its applications (Seattle,WA, 1999), 593-637, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, (2001).       
11 A. Katok and A. Kononenko, Cocycle stability for partially hyperbolic systems, Math. Res. Letters, 3 (1996), 191-210.       
12 A. Katok and V. Nitica, "Differentiable Rigidity of Higher-Rank Abelian Group Actions," Cambridge University Press, to appear.
13 A. Katok and R. Spatzier, First cohomology of Anosov actions of higher-rank abelian groups and applications to rigidity, Inst. Hautes čtudes Sci. Publ. Math. No. 79, (1994), 131-156.       
14 A. Katok and R. Spatzier, Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions, Math. Res. Letters, 1 (1994), 193-202.       
15 A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higher-rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova, 216 (1997), Din. Sist. i Smezhnye Vopr., 292-319; translation in Proc. Steklov Inst. Math., 1997, 287-314.       
16 G. A.Margulis, "Discrete Subgroups Of Semisimple Lie Groups,'' Ergebnisse derMathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17, Springer-Verlag, Berlin, 1991.       
17 G. A. Margulis and N. Qian, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices, Ergodic Theory Dynam. Systems, 21 (2001), 121-164.       
18 H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–-62.       
19 C. Moore, Group extensions of p-adic and adelic linear groups, Inst. Hautes Etudes Sci. Publ. Math., No. 35, (1968), 157-222.       
20 J. Milnor, "Introduction to Algebraic K-theory,'' Annals of Mathematics Studies, No. 72. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971.       
21 Y. Pesin, "Lectures on Partial Hyperbolicity and Stable Ergodicity,'' Zürich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2004.       
22 J. R. Silvester, "Introduction to Algebraic K-Theory," Chapman and Hall Mathematics Series. Chapman & Hall, London-New York, 1981.       
23 R. Steinberg, Générateurs, relations et revêtements de groupes algébriques, (French) 1962 Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962) 113-127 Librairie Universitaire, Louvain; Gauthier-Villars, Paris.       
24 R. Steinberg, "Lecture Notes on Chevalley Groups,'' Yale Univ., 1967.       
25 Zhenqi Wang, Local rigidity of partially hyperbolic actions, Journal of Modern Dynamics, 4 (2010), 271-327.

Go to top