`a`
Discrete and Continuous Dynamical Systems - Series S (DCDS-S)
 

Turing instability in a coupled predator-prey model with different Holling type functional responses
Pages: 1621 - 1628, Volume 4, Issue 6, December 2011

doi:10.3934/dcdss.2011.4.1621      Abstract        References        Full text (330.5K)           Related Articles

Zhifu Xie - Department of Mathematics and Computer Science, Virginia State University, Petersburg, Virginia 23806, United States (email)

1 X. Chen, Y. Qi and M. Wang, A strongly coupled predator-prey system with non-monotonic functional response, Nonl. Anal.: TMA, 67 (2007), 1966-1979.       
2 L. Chen and A. Jungel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations, 224 (2006), 39-59.       
3 Y. H. Du and Y. Lou, Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation, Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349.       
4 Y. H. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, Nonlinear Dynamics and Evolution Equations, in: Fields Inst. Commun., Vol. 48, Amer. Math. Soc., Providence, RI, 2006, 95-135.       
5 Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.       
6 Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593 (electronic).       
7 S. M. Fu, Z. J. Wen and S. B. Cui, On global solutions for the three-species food-chain model with cross-diffusion, ACTA Mathematica Sinica, Chinese Series, 50 (2007), 75-80.       
8 L. Hei, Global bifurcation of co-existence states for a predator-prey-mutualist model with diffusion, Nonl. Ana.: RWA, 8 (2007), 619-635.       
9 C. S. Holling, The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Canad. Entomol., 91 (1959), 293-320.
10 C. S. Holling, Some characteristics of simple types of predation and parasitism, Canad. Entomol., 91 (1959), 385-398.
11 X. J. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008), 2196-2213.       
12 S. B. Hsu and J. P. Shi, Relaxation oscillation profile of limit cycle in predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 893-911.       
13 J. Von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101.
14 A. J. Lotka, "Elements of Physical Biology," Baltimore: Williams & Wilkins Co., 1925.
15 E. Meron, E. Gilad, J. von Hardenberg, M. Shachak and Y. Zarmi, Vegetation patterns along a rainfall gradient, Chaos Solitons Fractals, 19 (2004), 367-376.
16 K. Ik Kim and Z. Lin, Coexistence of three species in a strongly coupled elliptic system, Nonl. Anal., 55 (2003), 313-333.       
17 T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 1387-1401.       
18 K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.       
19 C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations, 72 (1988), 1-27.       
20 J. D. Murray, "Mathematical Biology. Third Edition. I. An Introduction," Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002; II. Spatial models and biomedical applications. Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003.       
21 A. Okubo, "Diffusion and Ecological Problems: Mathematical Models, An Extended Version of the Japanese Edition, Ecology and Diffusion," Translated by G. N. Parker. Biomathematics, 10, Springer-Verlag, Berlin-New York, 1980.       
22 P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations, 200 (2004), 245-273; (2004), 1065-1089.       
23 J. P. Shi, Z. F. Xie and K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems, Preprint.
24 F. Yi, J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.       
25 A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London B, 237 (1952), 37-72.
26 V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2 (1926).
27 M. Wang, Stationary patterns of strongly coupled prey-predator models, J. Math. Anal. Appl., 292 (2004), 484-505.       
28 X. Wang, Qualitative behavior of solutions of chemotactic diffusion systems: Effects of motility and chemotaxis and dynamics, SIAM J. Math. Anal., 31 (2000), 535-560.       
29 C. S. Zhao, Asymptotic behaviors of a class of $N$-Laplacian Neumann problems with large diffusion, Nonlinear Anal., 69 (2008), 2496-2524.       
30 X. Zeng, Non-constant positive steady states of a prey-predator system with cross-diffusions, J. Math. Anal. Appl., 332 (2007), 989-1009.       

Go to top