Turing instability in a coupled predatorprey
model with different Holling type functional responses
Pages: 1621  1628,
Volume 4,
Issue 6,
December
2011
doi:10.3934/dcdss.2011.4.1621 Abstract
References
Full text (330.5K)
Related Articles
Zhifu Xie  Department of Mathematics and Computer Science, Virginia State University, Petersburg, Virginia 23806, United States (email)
1 
X. Chen, Y. Qi and M. Wang, A strongly coupled predatorprey system with nonmonotonic functional response, Nonl. Anal.: TMA, 67 (2007), 19661979. 

2 
L. Chen and A. Jungel, Analysis of a parabolic crossdiffusion population model without selfdiffusion, J. Differential Equations, 224 (2006), 3959. 

3 
Y. H. Du and Y. Lou, Qualitative behaviour of positive solutions of a predatorprey model: effects of saturation, Roy. Soc. Edinburgh Sect. A, 131 (2001), 321349. 

4 
Y. H. Du and J. P. Shi, Some recent results on diffusive predatorprey models in spatially heterogeneous environment, Nonlinear Dynamics and Evolution Equations, in: Fields Inst. Commun., Vol. 48, Amer. Math. Soc., Providence, RI, 2006, 95135. 

5 
Y. H. Du and J. P. Shi, A diffusive predatorprey model with a protection zone, J. Differential Equations, 229 (2006), 6391. 

6 
Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predatorprey model, Trans. Amer. Math. Soc., 359 (2007), 45574593 (electronic). 

7 
S. M. Fu, Z. J. Wen and S. B. Cui, On global solutions for the threespecies foodchain model with crossdiffusion, ACTA Mathematica Sinica, Chinese Series, 50 (2007), 7580. 

8 
L. Hei, Global bifurcation of coexistence states for a predatorpreymutualist model with diffusion, Nonl. Ana.: RWA, 8 (2007), 619635. 

9 
C. S. Holling, The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Canad. Entomol., 91 (1959), 293320. 

10 
C. S. Holling, Some characteristics of simple types of predation and parasitism, Canad. Entomol., 91 (1959), 385398. 

11 
X. J. Hou and A. W. Leung, Traveling wave solutions for a competitive reactiondiffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008), 21962213. 

12 
S. B. Hsu and J. P. Shi, Relaxation oscillation profile of limit cycle in predatorprey system, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 893911. 

13 
J. Von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101. 

14 
A. J. Lotka, "Elements of Physical Biology," Baltimore: Williams & Wilkins Co., 1925. 

15 
E. Meron, E. Gilad, J. von Hardenberg, M. Shachak and Y. Zarmi, Vegetation patterns along a rainfall gradient, Chaos Solitons Fractals, 19 (2004), 367376. 

16 
K. Ik Kim and Z. Lin, Coexistence of three species in a strongly coupled elliptic system, Nonl. Anal., 55 (2003), 313333. 

17 
T. Kadota and K. Kuto, Positive steady states for a preypredator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 13871401. 

18 
K. Kuto and Y. Yamada, Multiple coexistence states for a preypredator system with crossdiffusion, J. Differential Equations, 197 (2004), 315348. 

19 
C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations, 72 (1988), 127. 

20 
J. D. Murray, "Mathematical Biology. Third Edition. I. An Introduction," Interdisciplinary Applied Mathematics, 17, SpringerVerlag, New York, 2002; II. Spatial models and biomedical applications. Interdisciplinary Applied Mathematics, 18, SpringerVerlag, New York, 2003. 

21 
A. Okubo, "Diffusion and Ecological Problems: Mathematical Models, An Extended Version of the Japanese Edition, Ecology and Diffusion," Translated by G. N. Parker. Biomathematics, 10, SpringerVerlag, BerlinNew York, 1980. 

22 
P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a threespecies predatorprey model, J. Differential Equations, 200 (2004), 245273; (2004), 10651089. 

23 
J. P. Shi, Z. F. Xie and K. Little, Crossdiffusion induced instability and stability in reactiondiffusion systems, Preprint. 

24 
F. Yi, J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predatorprey system, J. Differential Equations, 246 (2009), 19441977. 

25 
A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London B, 237 (1952), 3772. 

26 
V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2 (1926). 

27 
M. Wang, Stationary patterns of strongly coupled preypredator models, J. Math. Anal. Appl., 292 (2004), 484505. 

28 
X. Wang, Qualitative behavior of solutions of chemotactic diffusion systems: Effects of motility and chemotaxis and dynamics, SIAM J. Math. Anal., 31 (2000), 535560. 

29 
C. S. Zhao, Asymptotic behaviors of a class of $N$Laplacian Neumann problems with large diffusion, Nonlinear Anal., 69 (2008), 24962524. 

30 
X. Zeng, Nonconstant positive steady states of a preypredator system with crossdiffusions, J. Math. Anal. Appl., 332 (2007), 9891009. 

Go to top
