Discrete and Continuous Dynamical Systems - Series S (DCDS-S)

Periodic solutions of a model for tumor virotherapy
Pages: 1587 - 1597, Volume 4, Issue 6, December 2011

doi:10.3934/dcdss.2011.4.1587      Abstract        References        Full text (590.3K)           Related Articles

Daniel Vasiliu - Department of Mathematics, Christopher Newport University, Newport News VA, 23606, United States (email)
Jianjun Paul Tian - Mathematics Department, College of William and Mary, Williamsburg, VA 23187, United States (email)

1 E. Antonio Chiocca, Oncolytic viruses, Nature reviews, Cancer, 2 (2002), 938-950.
2 K. Ikeda, T. Ichikawa, H. Wakimoto, J. S. Silver, D. Finkestein, G. R. Harsh, D. N. Louis, R. T. Bartus, F. H. Hochberg and E. A. Chiocca, Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses, Nature Med., 5 (1999), 881-888.
3 G. Fulci, et al, Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses, PNAS Proceedings of the National Academy of Sciences of the United States of America, 103 (2006), 12873-12878.
4 H. Kambara, H. Okano, E. A. Chiocca and Y. Saeki, An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor, Cancer Research, 65 (2005), 2832-2839.
5 H. Kambara, Y. Saeki and E. A Chiocca, Cyclophosphamide allows for in vivo dose reduction of a potent oncolytic virus, Cancer Research, 65 (2005), 11255-11258.
6 Shangbin Cui and Avner Friedman, A hyperbolic free boundary problem modeling tumor growth, Interfaces and Free Boundaries, 5 (2003), 159-181       
7 Avner Friedman, Jianjun Paul Tian, Giulia Fulci, Antonio Chioca and Jin Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Research, 4 (2006), 2314-2319.
8 Jianjun Paul Tian, Finite-time perturbations of dynamical systems and applications to tumor therapy, appear to Discrete and Continuous Dynamical Systems - B.       
9 Peter J. Olver, "Classical Invariant Theory," London Mathematical Society Student Texts, 1999.       
10 Lawrence Perko, "Differential Equations and Dynamical Systems," Third Edition, Springer, 2007.       
11 D.Roose and V. Hlavańćek, A direct method for the computation of Hopf bifurcation points, SIAM Journal of Applied Mathematics, 45 (1985), 879-894.       

Go to top