Symmetries in an overdetermined problem for the Green's function
Pages: 791  800,
Volume 4,
Issue 4,
August
2011
doi:10.3934/dcdss.2011.4.791 Abstract
References
Full text (330.8K)
Related Articles
Virginia Agostiniani  SISSA, via Bonomea 265, 34136 Trieste, Italy (email)
Rolando Magnanini  Dipartimento di Matematica "U. Dini", Università degli Studi di Firenze, viale Morgagni 67/A, 50134 Firenze, Italy (email)
1 
G. Alessandrini and E. Rosset, Symmetry of singular solutions of degenerate quasilinear elliptic equations, Rend. Sem. Mat. Univ. Trieste, 39 (2007), 18. 

2 
P. L. Duren, "Theory of $H^p$ Spaces," Academic Press, New York, 1970. 

3 
P. L. Duren, "Univalent Functions," SpringerVerlag, New York, 1983. 

4 
L. E. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems," Cambridge University Press, Cambridge, 2000. 

5 
G. M. Goluzin, "Geometric Theory of Functions of a Complex Variable," American Mathematical Society, Providence, 1969. 

6 
B. Gustafsson and A. Vasil'ev, "Conformal and Potential Analysis in HeleShaw Cells," Birkhäuser Verlag, Basel, 2006. 

7 
P. Koosis, "Introduction to $H_p$ Spaces," Cambridge University Press, Cambridge, 1998. 

8 
J. L. Lewis and A. Vogel, On some almost everywhere symmetry theorems, in "Progr. Nonlinear Differential Equations Appl.," 7, Birkhäuser Boston, Massachusetts, (1992), 347374. 

9 
A. I. Markushevich, "Theory of Functions of a Complex Variable," PrenticeHall, Englewood Cliffs, 1965. 

10 
L. E. Payne and P. W. Schaefer, Duality theorems in some overdetermined boundary value problems, Math. Meth. Appl. Sci., 11 (1989), 805819. 

11 
J. Privalov, Sur les fonctions conjuguées, Bulletin de la S. M. F., 44 (1916), 100103. 

12 
M. Sakai, "Quadrature Domains," SpringerVerlag, Berlin, 1982. 

13 
J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304318. 

14 
H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal., 43 (1971), 319320. 

Go to top
