`a`
Electronic Research Announcements in Mathematical Sciences (ERA-MS)
 

Optimally sparse 3D approximations using shearlet representations
Pages: 125 - 137, January 2010

doi:10.3934/era.2010.17.125      Abstract        References        Full text (228.1K)           Related Articles

Kanghui Guo - Department of Mathematics, Missouri State University, Springfield, Missouri 65804, United States (email)
Demetrio Labate - Department of Mathematics, University of Houston, Houston, Texas 77204, United States (email)

1 E. J. Cand├Ęs and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with $C^2$ singularities, Comm. Pure Appl. Math., 57 (2004), 219-266.       
2 F. Colonna, G. Easley, K. Guo and D. Labate, Radon transform inversion using the shearlet representation, Appl. Comput. Harmon. Anal., 29 (2010), 232-250.       
3 D. L. Donoho, Wedgelets: Nearly-minimax estimation of edges, Annals of Statistics, 27 (1999), 859-897.       
4 D. L. Donoho, Sparse components of images and optimal atomic decomposition, Constr. Approx., 17 (2001), 353-382.       
5 D. L. Donoho and G. Kutyniok. Microlocal analysis of the geometric separation problem, preprint, (2010).
6 D. L. Donoho, M. Vetterli, R. A. DeVore and I. Daubechies, Data compression and harmonic analysis, IEEE Trans. Inform. Th., 44 (1998), 2435-2476.       
7 G. R. Easley, D. Labate and F. Colonna, Shearlet-based total variation diffusion for denoising, IEEE Trans. Image Proc., 18 (2009), 260-268.       
8 G. R. Easley, D. Labate and W. Lim, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. Harmon. Anal., 25 (2008), 25-46.       
9 K. Guo, G. Kutyniok and D. Labate, Sparse multidimensional representations using anisotropic dilation and shear operators, in "Wavelets and Splines" (G. Chen and M. Lai, eds.), Nashboro Press, Nashville, TN, (2006), 189-201.       
10 K. Guo and D. Labate, Optimally sparse multidimensional representation using shearlets, SIAM J. Math. Anal., 9 (2007), 298-318.       
11 K. Guo and D. Labate, Characterization and analysis of edges using the continuous shearlet transform, SIAM J. Imag. Sci., 2 (2009), 959-986.       
12 K. Guo and D. Labate, "Optimally Sparse Representations of 3D Data with $C^2$ Surface Singularities Using Parseval Frames of Shearlets," Technical Report, University of Houston, 2010.
13 K. Guo, W.-Q Lim, D. Labate, G. Weiss and E. Wilson, Wavelets with composite dilations, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 78-87.       
14 K. Guo, W-Q. Lim, D. Labate, G. Weiss and E. Wilson, Wavelets with composite dilations and their MRA properties, Appl. Computat. Harmon. Anal., 20 (2006), 231-249.       
15 G. Kutyniok and W. Lim, Compactly supported shearlets are optimally sparse, preprint, (2010).
16 G. Kutyniok and T. Sauer. Adaptive directional subdivision schemes and shearlet multiresolution analysis, SIAM J. Math. Anal., 41 (2009), 1436-1471.       
17 G. Kutyniok, M. Shahram and D. L. Donoho. Development of a digital shearlet transform based on pseudo-polar FFT, in "Wavelets XIII" (San Diego, CA, 2009), SPIE Proc. 7446, SPIE, Bellingham, WA, (2009), 74460B-1-74460B-13.
18 S. Mallat, "A Wavelet Tour of Signal Processing. The Sparse Way," Academic Press, San Diego, CA, 2009.       
19 E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton University Press, Princeton, NJ, 1970.       
20 S. Yi, D. Labate, G. R. Easley and H. Krim, A Shearlet approach to edge analysis and detection, IEEE Trans. Image Process, 18 (2009), 929-941.       

Go to top