Curvature bounded below: A definition a la BergNikolaev
Pages: 122  124,
January
2010
doi:10.3934/era.2010.17.122 Abstract
References
Full text (94.9K)
Related Articles
Nina Lebedeva  St. Petersburg Department of V.A. Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russian Federation (email)
Anton Petrunin  Department of Mathematics, Penn State University, University Park, PA 16802, United States (email)
1 
I. D. Berg and I. G. Nikolaev, Quasilinearization and curvature of Aleksandrov spaces, Geom. Dedicata, 133 (2008), 195218. 

2 
Yu. Burago, M. Gromov and G. Perelman, A. D. Aleksandrov spaces with curvatures bounded below, (Russian) Uspekhi Mat. Nauk, 47 (1992), 351, 222; translation in Russian Math. Surveys 47 (1992), 158. 

3 
T. Foertsch, A. Lytchak and V. Schroeder, Nonpositive curvature and the Ptolemy inequality, Int. Math. Res. Not. (IMRN), 2007 (2007), Art. ID rnm100, 15 pp. 

4 
M. Gromov, "Metric Structures for Riemannian and NonRiemannian Spaces," Progress in Mathematics, vol. 152, BirkhĂ¤user Boston, Inc., Boston, MA, 1999. 

5 
U. Lang and V. Schroeder, Kirszbraun's theorem and metric spaces of bounded curvature, Geom. Funct. Anal., 7 (1997), 535560. 

6 
Takashi Sato, An alternative proof of Berg and Nikolaev's characterization of $CAT(0)$spaces via quadrilateral inequality, Arch. Math. (Basel), 93 (2009), 487490. 

Go to top