Discrete and Continuous Dynamical Systems - Series S (DCDS-S)

The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity
Pages: 209 - 222, Volume 4, Issue 1, February 2011

doi:10.3934/dcdss.2011.4.209      Abstract        References        Full text (165.8K)           Related Articles

Madalina Petcu - Laboratoire de Mathématiques et Applications UMR CNRS 6086, Université de Poitiers, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil, France (email)
Roger Temam - The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 E. 3rd St., Rawles Hall, Bloomington, IN 47405, United States (email)

1 M. J. P. Cullen, Analysis of the semi-geostrophic shallow water equations, Phys. D, 237 (2008), 1461-1465.       
2 C. D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography, Nonlinearity, 14 (2001), 1493-1515.       
3 P.-L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., 49 (1996), 599-638.       
4 P.-L. Lions, B. Perthame and P. E. Souganidis, Weak stability of isentropic gas dynamics for $\gamma=5/3$, in "Progress in Elliptic and Parabolic Partial Differential Equations" (Capri, 1994), vol. 350 of Pitman Res. Notes Math. Ser., Longman, Harlow, (1996), 184-192.       
5 A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, in "Frontiers of the Mathematical Sciences: 1985," (New York, 1985), Comm. Pure Appl. Math., 39 (1986), S187-S220.       
6 A. J. Majda, "Compressible Fluid Flows and Systems of Conservation Laws in Several Space Variables," Springer-Verlag, New York, 1984.       
7 A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge texts in applied mathematics, Cambridge University Press, New York, 2002.       
8 P. Orenga, Un théorème d'existence de solutions d'un problème de shallow water, Arch. Rational Mech. Anal., 130 (1995), 183-204.       
9 D. Pritchard and L. Dickinson, The near-shore behaviour of shallow-water waves with localized initial conditions, J. Fluid Mech., 591 (2007), 413-436.       
10 J. M. Rakotoson, R. Temam and J. Tribbia, Remarks on the nonviscous shallow water equations, Indiana University Mathematics Journal, 57 (2008), 2969-2998.       
11 M. E. Taylor, Partial differential equations. III, vol. 117 of Applied Mathematical Sciences, Springer-Verlag, New York, 1997, Nonlinear equations, Corrected reprint of the 1996 original.       

Go to top