`a`
Journal of Modern Dynamics (JMD)
 

Measure and cocycle rigidity for certain nonuniformly hyperbolic actions of higher-rank abelian groups
Pages: 487 - 515, Issue 3, July 2010

doi:10.3934/jmd.2010.4.487      Abstract        References        Full text (331.2K)           Related Articles

Anatole Katok - Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States (email)
Federico Rodriguez Hertz - IMERL-Facultad de Ingeniería, Universidad de la República, ulio Herrera y Reissig 565, CC 30, 11300 Montevideo, Uruguay (email)

1 L. Barreira and Y. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory," University Lecture Series, 23, AMS, Providence, R.I., 2002.       
2 L. Barreira and Y. Pesin, "Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents," Encyclopedia of Mathematics and Its Applications, 115, Cambridge University Press, 2007.
3 D. Damjanovic and A. Katok, Local Rigidity of Partially Hyperbolic Actions. II. The geometric method and restrictions of Weyl chamber flows on $SL(n, R)$/$\Gamma$, www.math.psu.edu/katok_a/papers.html.
4 R. de la Llave, Smooth conjugacy and SRB measures for uniformly and non-uniformly hyperbolic systems, Comm. Math. Phys., 150 (1992), 289-320.       
5 M. Einsiedler and E. Lindenstrauss, Rigidity properties of $\mathbbZ^d$-actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 99-110.       
6 H. Hu, Some ergodic properties of commuting diffeomorphisms, Ergodic Theory Dynam. Systems, 13 (1993), 73-100.       
7 B. Kalinin and A. Katok, Invariant measures for actions of higher-rank abelian groups, Proc. Symp. Pure Math, 69 (2001), 593-637.       
8 B. Kalinin and A. Katok, Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori, Journal of Modern Dynamics, 1 (2007), 123-146.       
9 B. Kalinin, A. Katok and F. Rodriguez Hertz, New progress in nonuniform measure and cocycle rigidity, Electronic Research Announcements in Mathematical Sciences, 15 (2008), 79-92.       
10 B. Kalinin, A. Katok and F. Rodriguez Hertz, Nonuniform measure rigidity, Annals of Mathematics, to appear.
11 A. Katok, V. Nitica and A. Török, Non-Abelian cohomology of abelian Anosov actions, Ergod. Th. & Dynam. Syst., 20 (2000), 259-288.       
12 A. Katok and V. Nitica, "Differentiable Rigidity of Higher-Rank Abelian Group Actions I. Introduction and Cocycle Problem," Cambridge University Press, to appear.
13 A. Katok and F. Rodriguez Hertz, Uniqueness of large invariant measures for $\Z^k$ actions with Cartan homotopy data, Journal of Modern Dynamics, 1 (2007), 287-300.       
14 A. Katok and R. J. Spatzier, First cohomology of Anosov actions of higher-rank abelian groups and applications to rigidity, Publ. Math. IHES, 79 (1994), 131-156.       
15 A. Katok and R. J. Spatzier, Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions, Math. Res. Letters, 1 (1994), 193-202.       
16 F. Ledrappier and J.-S. Xie, Vanishing transverse entropy in smooth ergodic theory, preprint.
17 F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Annals of Mathematics, 122 (1985), 509-539.       
18 F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. Part II: Relations between entropy, exponents and dimension, Annals of Mathematics, 122 (1985), 540-574.       
19 F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi and R. Ures, A criterion for ergodicity of non-uniformly hyperbolic diffeomorphisms, Electronic Research Announcements in Mathematical Sciences, 14 (2007), 74-81.       

Go to top