Inverse Problems and Imaging (IPI)

Remarks on the general Funk transform and thermoacoustic tomography
Pages: 693 - 702, Volume 4, Issue 4, November 2010

doi:10.3934/ipi.2010.4.693      Abstract        References        Full text (168.2K)           Related Articles

Victor Palamodov - School of Mathematical Sciences, Tel Aviv University, Ramat Aviv Tel Aviv 69978, Israel (email)

1 M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform, J. Funct. Anal., 248 (2007), 344-386.       
2 J. Boman, On stable inversion of the attenuated Radon transform with half data, in "Integral Geometry and Tomography," 19-26, Amer. Math. Soc., Providence, RI, 2006.       
3 D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball, Inverse Problems, 22 (2006), 923-938.       
4 P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien, Math. Ann., 74 (1913), 278-300.       
5 V. Guillemin, On some results of Gelfand in integral geometry, in "Pseudodifferential Operators and Applications," 149-155, Proc. Sympos.Pure Math., 43, Amer. Math. Soc., Provindence, RI, 1985.       
6 L. Hörmander, "The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators," Springer, 1985.       
7 M. M. Lavrent'ev and A. L. Buhgeim, A certain class of problems of integral geometry, Dokl. Akad. Nauk SSSR, 211 (1973), 38-39.       
8 R. G. Mukhometov, On a problem of integral geometry on the plane, in "Methods of Functional Analysis in Problems of Mathematical Physics (Russian)," 30-37, Akad. Nauk Ukrain. SSR, 180, Inst. Mat., Kiev, 1978.       
9 F. Natterer, "The Mathematics of Computerized Tomography," B.G.Teubner, John Wiley & Sons, Stuttgart, 1986.       
10 S. K. Patch, Moment conditions indirectly improve image quality, in "Radon Transform and Tomography," 193-205, Amer. Math. Soc., Providence, RI, 2001.       
11 S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging, Inverse Problems, 23 (2007), S1-S10.       
12 D. A. Popov, The generalized Radon transform on the plane, its inversion, and the Cavalieri conditions, Funct. Anal. Appl., 35 (2001), 270-283.       
13 D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography, Probl. Inf. Transm., 40 (2004), 254-278.       
14 E. T. Quinto, The dependence of the generalized Radon transform on defining measures, Trans. Amer. Math. Soc., 257 (1980), 331-346.       
15 H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with 180 $^\circ$ data, Inverse Problems, 20 (2004), 781-797.       

Go to top