`a`
Journal of Industrial and Management Optimization (JIMO)
 

Extended canonical duality and conic programming for solving 0-1 quadratic programming problems
Pages: 779 - 793, Volume 6, Issue 4, November 2010

doi:10.3934/jimo.2010.6.779      Abstract        References        Full text (182.4K)           Related Articles

Cheng Lu - Department of Mathematical Sciences, Tsinghua University, Beijing, China (email)
Zhenbo Wang - Department of Mathematical Sciences, Tsinghua University, Beijing, China (email)
Wenxun Xing - Department of Mathematical Sciences, Tsinghua University, Beijing, China (email)
Shu-Cherng Fang - Department of Industrial and System Engineering, North Carolina State University, Raleigh, NC 27695, United States (email)

1 K. Allemand, K. Fukuda, T. M. Liebling and E. Steiner, A polynomial case of unconstrained zero-one quadratic optimization, Mathematical Programming, 91 (2001), 49-52.       
2 S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs, Mathematical Programming, 120 (2009), 479-495.       
3 S.-C. Fang, D. Y. Gao, R.-L. Sheu and S.-Y. Wu, Canonical dual approach to solving 0-1 quadratic programming problem, J. Industrial and Management Optimization, 3 (2007), 125-142.       
4 S.-C. Fang, D. Y. Gao, R.-L. Sheu and W. Xing, Global optimization for a class of fractional programming problems, J. Global Optimization, 45 (2009), 337-353.       
5 D. Y. Gao, Canonical dual transformation method and generalized triality theory in nonsmooth global optimization, J. Global Optimization, 17 (2000), 127-160.       
6 D. Y. Gao, Advances in canonical duality theory with applications to global optimization, available at: http://www.math.vt.edu/people/gao/papers/focapo08.pdf.
7 M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness," W. H. Freeman, San Francisco, CA, 1979.       
8 M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), 1115-1145.       
9 V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Non-convex quadratic minimization problems with quadratic constraints: Global optimality conditions, Mathematical Programming, 110 (2007), 521-541.       
10 Q. Jin, S.-C. Fang and W. Xing, On the global optimality of generalized trust region subproblems, Optimization.
11 E. Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming, SIAM J. Optimization, 12 (2002), 875-892.       
12 C. Lu, Z. Wang and W. Xing, An improved lower bound and approximation algorithm for binary constrained quadratic programming problem, J. Global Optimization.
13 A. Ben-Israel and T. N. E. Greville, "Generalized Inverses," Springer-Verlag, 2003.       
14 P. M. Pardalos and G. P. Rodgers, Computational aspects of a branch and bound algorithm for quadratic zero-one programming, Computing, 45 (1990), 131-144.       
15 J. F. Sturm and S. Z. Zhang, On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246-267.       
16 X. Sun, C. Liu, D. Li and J. Gao, On duality gap in binary quadratic programming, aviable at: http://www.optimization-online.org/DB_FILE/2010/01/2512.pdf.
17 Z. Wang, S.-C. Fang, D. Y. Gao and W. Xing, Global extremal conditions for multi-integer quadratic programming, J. Industrial and Management Optimization, 4 (2008), 213-225.       
18 Z. Wang, S.-C. Fang, D. Y. Gao and W. Xing, Canonical dual approach to solving the maximum cut problem, Working Paper, to appear in J. Global Optimization.
19 L. A. Wolsey, "Integer Programming," Wiley-Interscience, 1998.       
20 W. Xing, S.-C. Fang, D. Y. Gao and L. Zhang, Canonical duality solutions to quadratic programming over a quadratic constraint, Proceedings of ICOTA7, (2007), 35-36.

Go to top