`a`
Inverse Problems and Imaging (IPI)
 

Localized potentials in electrical impedance tomography
Pages: 251 - 269, Volume 2, Issue 2, May 2008

doi:10.3934/ipi.2008.2.251      Abstract        References        Full text (427.5K)           Related Articles

Bastian Gebauer - Institut für Mathematik, Johannes Gutenberg-Universität Maint, 55099 Mainz, Germany (email)

1 H. Ammari, R. Griesmaier and M. Hanke, Identification of small inhomogeneities: asymptotic factorization, Math. Comp., 76 (2007), 1425-1448.       
2 T. Arens, Why linear sampling works, Inverse Problems, 20 (2004), 163-173.       
3 K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane, Ann. of Math., 163 (2006), 265-299.       
4 M. Azzouz, M. Hanke, C. Oesterlein and K. Schilcher, The factorization method for electrical impedance tomography data from a new planar device, International Journal of Biomedical Imaging, vol. 2007, Article ID 83016, 7 pages, 2007.
5 N. Bourbaki, "Elements of Mathematics, Topological Vector Spaces, Chapters 1-5," Springer-Verlag, Berlin, 2003.
6 M. Brühl, Explicit characterization of inclusions in electrical impedance tomography, SIAM J. Math. Anal., 32 (2001), 1327-1341.       
7 M. Brühl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography, Inverse Problems, 16 (2000), 1029-1042.       
8 A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial cauchy data, Comm. Partial Differential Equations, 27 (2002), 653-668.       
9 A. P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Application to Continuum Physics" (eds. W. H. Meyer and M. A. Raupp), Math. Soc., Rio de Janeiro, Brasil, (1980), 65-73.
10 A. P. Calderón, On an inverse boundary value problem, Comput. Appl. Math., 25 (2006), 133-138.       
11 R. Dautray and J. L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology - Volume 2: Functional and Variational Methods," Springer-Verlag, Berlin, 2000.
12 V. Druskin, On the uniqueness of inverse problems from incomplete boundary data, SIAM J. Appl. Math., 58 (1998), 1591-1603.       
13 H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," volume 375 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht/Boston/London, 2000.
14 F. Frühauf, B. Gebauer and O. Scherzer, Detecting interfaces in a parabolic-elliptic problem from surface measurements, SIAM J. Numer. Anal., 45 (2007), 810-836.       
15 B. Gebauer, The factorization method for real elliptic problems, Z. Anal. Anwend., 25 (2006), 81-102.       
16 B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography, Inverse Problems, 23 (2007), 2159-2170.       
17 M. Hanke and M. Brühl, Recent progress in electrical impedance tomography, Inverse Problems, 19 (2003) S65-S90.       
18 M. Hanke and B. Schappel, The factorization method for electrical impedance tomography in the half space, SIAM J. Appl. Math., 68 (2008), 907-924.
19 N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions, SIAM J. Appl. Math., 64 (2004), 902-931.       
20 N. Hyvönen, H. Hakula and S. Pursiainen, Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography, Inverse Probl. Imaging, 1 (2007), 299-317.       
21 V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math., 41 (1988), 865-877.       
22 V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, 1 (2007), 95-105.       
23 C. E. Kenig, J. Sjöstrand and G. Uhlmann, The calderón problem with partial data, Ann. of Math., 165 (2007), 567-591.       
24 A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998), 1489-1512.       
25 A. Kirsch, The factorization method for a class of inverse elliptic problems, Math. Nachr., 278 (2005), 258-277.       
26 A. Kirsch, An integral equation for maxwell's equations in a layered medium with an application to the factorization method, J. Integral Equations Appl., 19 (2007), 333-358.       
27 R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37 (1984), 289-298.       
28 R. Kohn and M. Vogelius, Determining conductivity by boundary measurements II. interior results, Comm. Pure Appl. Math., 38 (1985), 643-667.       
29 A. Lechleiter, N. Hyvönen and H. Hakula, The factorization method applied to the complete electrode model of impedance tomography, SIAM J. Appl. Math., 68 (2008), 1097-1121.
30 C. Miranda, "Partial Differential Equations of Elliptic Type," Springer-Verlag, Berlin, 1970.
31 A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96.       
32 W. Rudin, "Functional Analysis," 2nd ed., McGraw-Hill, New-York, 1991.
33 J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.       

Go to top