Inverse Problems and Imaging (IPI)

An efficient computational method for total variation-penalized Poisson likelihood estimation
Pages: 167 - 185, Volume 2, Issue 2, May 2008

doi:10.3934/ipi.2008.2.167      Abstract        References        Full text (590.0K)           Related Articles

Johnathan M. Bardsley - Department of Mathematical Sciences, University of Montana Missoula, Montana 59812, United States (email)

1 D. P. Bertsekas, On the Goldstein-Levitin-Poljak gradient projection method, IEEE Transactions on Automatic Control, 21 (1976), 174-184.       
2 Johnathan M. Bardsley and James G. Nagy, Covariance-preconditioned iterative methods for nonnegatively constrained astronomical imaging, SIAM Journal on Matrix Analysis and Applications, 27 (2006), 1184-1197.       
3 J. M. Bardsley and C. R. Vogel, A nonnnegatively constrained convex programming method for image reconstruction, SIAM Journal on Scientific Computing, 25 (2004), 1326-1343 (electronic).       
4 Johnathan M. Bardsley and Aaron Luttman, Total variation-penalized Poisson likelihood estimation for ill-posed problems, accepted, Advances in Computational Mathematics, Special Issue on Mathematical Imaging, University of Montana Technical Report #8, 2006.
5 P. H. Calamai and J. J. Moré, Projected gradient methods for linearly constrained problems, Mathematical Programming, 39 (1987), 93-116.       
6 D. Calvetti, G. Landi, L. Reichel and S. Sgallari, Non-negativity and iterative methods for ill-posed problems, Inverse Problems, 20 (2004), 1747-1758.       
7 Daniela Calvetti and Erkki Somersalo, A Gaussian hypermodel for recovering blocky objects, Inverse Problems, 23 (2007), 733-754.       
8 Torbjørn Eltoft and Taesu Kim, On the multivariate Laplace distribution, IEEE Signal Processing Letters, 13 (2006), 300-303.
9 J. W. Goodman, "Introduction to Fourier Optics," 2nd Edition, McGraw-Hill, 1996.
10 M. Green, Statistics of images, the TV algorithm of Rudin-Osher-Fatemi for image denoising, and an improved denoising algorithm, CAM Report 02-55, UCLA, October 2002.
11 Jinggang Huang and David Mumford, Statistics of natural images and models, in "Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition," 1999, 541-547.
12 Jari Kaipio and Erkki Somersalo, "Satistical and Computational Inverse Problems," Applied Mathematical Sciences, 160, Springer-Verlag, New York, 2005.       
13 C. T. Kelley, "Iterative Methods for Optimization," Frontiers in Applied Mathematics, 18, SIAM, Philadelphia, 1999.       
14 J. J. Moré and G. Toraldo, On the solution of large quadratic programming problems with bound constraints, SIAM Journal on Optimization, 1 (1991), 93-113.       
15 J. Nagy and Z. Strakoš, Enforcing nonnegativity in image reconstruction algorithms, Mathematical Modeling, Estimation, and Imaging, David C. Wilson, et.al., Eds., 4121 (2000), 182-190.
16 J. Nocedal and S. Wright, "Numerical Optimization," Series in Operations Research. Springer-Verlag, New York, 1999.       
17 R. T. Rockafellar, "Convex Analysis," Princeton University Press, 1970.       
18 L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.
19 D. L. Snyder, A. M. Hammoud and R. L. White, Image recovery from data acquired with a charge-coupled-device camera, Journal of the Optical Society of America A, 10 (1993), 1014-1023.
20 C. R. Vogel, Computational methods for inverse problems, With a foreword by H. T. Banks. Frontiers in Applied Mathematics, 23, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.       
21 C. R. Vogel and M. E. Oman, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Transactions on Image Processing, 7 (1998), 813-824.       

Go to top