A decomposition for the Schrödinger equation with applications to bilinear
and multilinear estimates
Pages: 627  646,
Issue 2,
March
2018
doi:10.3934/cpaa.2018034 Abstract
References
Full text (440.3K)
Related Articles
Felipe Hernandez  182 Memorial Dr, Cambridge, MA 02142, United States (email)
1 
J. Bennett, A. Carbery and T. Tao, On the multilinear restriction and Kakeya conjectures, Acta Mathematica, 196 (2006), 261302. 

2 
J. Bourgain and C. Demeter, The proof of the $l^2$ decoupling conjecture, arXiv preprint arXiv:1403.5335, 2014. 

3 
J. Bourgain and L. Guth, Bounds on oscillatory integral operators based on multilinear estimates, Geometric and Functional Analysis, 21 (2011), 12391295. 

4 
J. Bourgain, Refinements of Strichartz' inequality and applications to 2DNLS with critical nonlinearity, Intern. Mat. Res. Notices, 5 (1998), 253283. 

5 
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservations laws and global rough sol.utions to a nonlinear Schrödinger equation, Math. Res. Letters, 9 (2002), 659682. 

6 
L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Canadian Journal of Mathematics, 8 (1956), 399404. 

7 
L. Guth, A short proof of the multilinear Kakeya inequality, In Mathematical Proceedings of the Cambridge Philosophical Society, volume 158, pages 147153. Cambridge Univ Press, 2015. 

8 
Z. Hani, A bilinear oscillatory integral estimate and bilinear refinements to Strichartz estimates on closed manifolds, Analysis and PDE, 5 (2012), 339362. 

9 
Z. Hani, Global wellposedness of the cubic nonlinear Schrödinger equation on closed manifolds, Communications in Partial Differential Equations, 37 (2012), 11861236. 

10 
S. Joseph, The maxflow mincut theorem, 2007. 

11 
S. Klainerman, I. Rodnianski and T. Tao, A physical space approach to wave equation bilinear estimates, Journal d’Analyse Mathématique, 87 (2002), 299336. 

12 
A. StaplesMoore, Network flows and the maxflow mincut theorem, http://www.math.uchicago.edu/ may/VIGRE/VIGRE2009/REUPapers/StaplesMoore.pdf. 

13 
T. Tao, A physical space proof of the bilinear Strichartz and local smoothing estimate for the Schrödinger equation, 2010. 

Go to top
