Sharp wellposedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation
Pages: 487  504,
Issue 2,
March
2018
doi:doi:10.3934/cpaa.2018027 Abstract
References
Full text (440.3K)
Related Articles
Yuanyuan Ren  School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China (email)
Yongsheng Li  School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China (email)
Wei Yan  College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, China (email)
1 
I. Bejenaru and T. Tao, Sharp wellposedness and illposedness results for a quadratic nonlinear Schrödinger equation, J. Funct. Anal., 233 (2006), 228259. 

2 
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107156. 

3 
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global wellposedness for KdV and modified KdV on $\mathbbR$ and $\mathbbT$, J. Amer. Math. Soc., 16 (2003), 705749. 

4 
B. L. Guo and B. X. Wang, The global Cauchy problem and scattering of solutions for nonlinear Schrödinger equations in $H^s$, Diff. Int. Eqns., 15 (2002), 10731083. 

5 
C. Hao, L. Hsiao and B. X. Wang, Wellposedness for the fourthorder Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246265. 

6 
C. Hao, L. Hsiao and B. X. Wang, Wellposedness of the Cauchy problem for the fourthorder Schrödinger equations in high dimensions, J. Math. Anal. Appl., 328 (2007), 5883. 

7 
V. I. Karpman, Stabilization of soliton instabilities by higherorder dispersion: Fourth order nonlinear Schrödingertype equations, Phys. Rev. E, 53 (1996), 13361339. 

8 
N. Kishimoto, Remark on the paper "Sharp wellposedness and illposedness results for a quadratic nonlinear Schrödinger equation'' by I. Bejenaru and T. Tao, Atl. Electron. J. Math., 4 (2011), 3548. 

9 
B. A. Ivanov and A. M. Kosevich, Stable threedimensional smallamplitude soliton in magnetic materials, Sov. J. Low Temp. Phys., 9 (1983), 439442. 

10 
C. X. Miao, G. X. Xu and L. F. Zhao, Global wellposedness and scattering for the focusing energycritical nonlinear Schrödinger equations of fourth order in the radial case, J. Diff. Eqns., 246 (2009), 37153749. 

11 
C. X. Miao and J. Q. Zheng, Scattering theory for the defocusing fourthorder Schrödinger equation, Nonlinearity, 29 (2016), 692736. 

12 
B. Pausader, Global wellposedness for energy critical fourthorder Schrödinger equations in the radial case, Dyn. Partial Diff. Eqns., 4 (2007), 197225. 

13 
B. Pausader, The cubic fourthorder Schrödinger equation, J. Funct. Anal., 256 (2009), 24732517. 

14 
B. Pausader, The focusing energycritical fourthorder Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., 24 (2009), 12751292. 

15 
B. Pausader and S. L. Shao, The masscritical fourthorder Schrödinger equation in high dimensions, J. Hyperbolic Diff. Eqns., 7 (2010), 651705. 

16 
B. Pausader and S. X. Xia, Scattering theory for the fourthorder Schrödinger equation in low dimensions, Nonlinearity, 26 (2013), 21752191. 

17 
H. Pecher and W. von Wahl, Time dependent nonlinear Schrödinger equations, Manuscripta Math., 27 (1979), 125157. 

18 
J. Segata, Modified wave operators for the fourthorder nonlinear Schrödingertype equation with cubic nonlinearity, Math. Methods. Appl. Sci., 26 (2006), 17851800. 

19 
T. Tao, Multilinear weighted convolution of $L^{2}$ functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839908. 

20 
S. K. Turitsyn, Threedimensional dispersion of nonlinearity and stability of multidimentional solitons, Teoret. Mat. Fiz., 64 (1985), 226232 (Russian). 

21 
J. Q. Zheng, Wellposedness for the fourthorder Schrödinger equations with quadratic nonlinearity, Adv. Diff. Eqns., 16 (2011), 467486. 

Go to top
