`a`
Communications on Pure and Applied Analysis (CPAA)
 

Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model
Pages: 429 - 448, Issue 2, March 2018

doi:doi:10.3934/cpaa.2018024      Abstract        References        Full text (492.2K)           Related Articles

Caterina Calgaro - Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France (email)
Meriem Ezzoug - Unité de recherche : Multifractals et Ondelettes, FSM, University of Monsatir, 5019 Monastir, Tunisia (email)
Ezzeddine Zahrouni - Unité de recherche : Multifractals et Ondelettes, FSM, University of Monsatir, 5019 Monastir, Tunisia (email)

1 S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and Its Applications, 22, North-Holland, Publishing Co., Amesterdam, 1990.       
2 D. Bresch, E. H. Essoufi and M. Sy, Effects of density dependent viscosities on multiphasic incompressible fluid models, J. Math. Fluid Mech., 9 (2007), 377-397.       
3 R. C. Cabrales, F. Guillén-González and J. V. Gutiérrez-Santacreu, Stability and convergence for a complete model of mass diffusion, Applied Numerical Mathematics, 61 (2011), 1161-1185.       
4 X. Cai, L. Liao and Y. Sun, Global regularity for the initial value problem of a 2-D Kazhikhov-Smagulov type model, Nonlinear Analysis, 75 (2012), 5975-5983.       
5 X. Cai, L. Liao and Y. Sun, Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model, Discrete and Continuous Dynamical Systems, Series S, 7 (2014), 917-923.       
6 C. Calgaro, E. Chane-Kane, E. Creusé and T. Goudon, $L^\infty$-stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios, J. Comput. Physics, 229 (2010), 6027-6046.       
7 C. Calgaro, E. Creusé and T. Goudon, An hybrid finite volume-finite element method for variable density incompressible flows, J. Comput. Physics, 227 (2008), 4671-4696.       
8 C. Calgaro, E. Creusé and T. Goudon, Modeling and simulation of mixture flows: Application to powder-snow avalanches, Computers and Fluids, 107 (2015), 100-122.       
9 C. Calgaro and M. Ezzoug, $L^\infty$-stability of IMEX-BDF2 finite volume scheme for convection-diffusion equation, Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects, 2 (2017), 245-253.       
10 P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1979.       
11 J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods, Mathematical Models and Methods in Applied Sciences, 24 (2014), 1575-1619.       
12 J. Étienne and P. Saramito, A priori error estimates of the Lagrange-Galerkin method for Kazhikhov-Smagulov type systems, C.R. Acad. Sci. Paris Ser. I, 341 (2005), 769-774.       
13 R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, Handbook of Numerical Analysis, vol. VII, North-Holland, Amsterdam, (2000), 713-1020.       
14 M. Feistauer, J. Felcman and M. Lukáčová-Medvid'ová, On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems, Numerical Methods Partial Differential Equations, 13 (1997), 163-190.       
15 M. Feistauer, J. Felcman, M. Lukáčová-Medvid'ová and G. Warnecke, Error estimates for a combined finite volume-finite element method for nonlinear convection-diffusion problems, SIAM J. Numer. Anal., 36 (1999), 1528-1548.       
16 V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithm, Springer Series in Computational Mathematics, Vol 5, Springer-Verlag, Berlin, 1986.       
17 F. Guillén-González, P. Damázio and M. A. Rojas-Medar, Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion, J. Math. Anal. Appl., 326 (2007), 468-487.       
18 F. Guillén-González and J. V. Gutiérrez-Santacreu, Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion, Mathematics of Computation., 77 (2008), 1495-1524.       
19 F. Guillén-González and J. V. Gutiérrez-Santacreu, Conditional stability and convergence of fully discrete scheme for three-dimensional Navier-Stokes equations with mass diffusion, SIAM J. Numer. Anal., 46 (2008), 2276-2308.       
20 F. Guillén-González and J. V. Gutiérrez-Santacreu, Error estimates of a linear decoupled Euler-FEM scheme for a mass diffusion model, Numer. Math., 117 (2011), 333-371.       
21 A. Kazhikhov and Sh. Smagulov, The correctness of boundary value problems in a diffusion model of an inhomogeneous fluid, Sov. Phys. Dokl., 22 (1977), 249-252.       
22 J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969.       
23 P. Secchi, On the motion of viscous fluids in the presence of diffusion, SIAM J. Math. Anal., 19 (1988), 22-31.       
24 D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, 2003.       
25 J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.       
26 R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Revised Edition, Studies in mathematics and its applications vol. 2, North Holland Publishing Company-Amsterdam, New York, 1984.       
27 E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamic; A Practical Introduction, Springer-Verlag, Berlin, 2009.       

Go to top