`a`
Communications on Pure and Applied Analysis (CPAA)
 

Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating
Pages: 347 - 374, Issue 2, March 2018

doi:10.3934/cpaa.2018020      Abstract        References        Full text (502.9K)           Related Articles

Yinxia Wang - School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, 450011, China (email)
Hengjun Zhao - College of Sciences, Henan University of Engineering, Zhengzhou, 451191, China (email)

1 Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 ane 3 space dimensions, Comm. Partial Differential Equations, 31 (2006), 1793-1810.       
2 X. Hu, Wellposedness of self-gravitating Hookean elastodynamics, preprint.
3 X. Hu and D. Wang, Local strong solution to the compressible viscoelastic flow with large data, J. Differential Equations, 249 (2010), 1179-1198.       
4 X. Hu and D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows, J. Differential Equations, 250 (2011), 1200-1231.       
5 X. Hu and D. Wang, Strong solutions to the three-dimensional compressible viscoelastic fluids, J. Differential Equations, 252 (2012), 4027-4067.       
6 X. Hu and D. Wang, The initial-boundary value problem for the compressible viscoelastic flows, Discrete Contin. Dyn. Syst., 35 (2015), 917-934.       
7 X. Hu and G. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows, SIAM J. Math. Anal., 45 (2013), 2815-2833.       
8 X. Hu and F. Lin, Scaling limit for compressible viscoelastic fluids, Frontiers in Differential Geometry, Partial Differential Equations and Mathematical Physics, 243-269, World Sci. Publ., Hackensack, NJ, 2014.
9 X. Hu and F. Lin, Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data, Comm. Pure Appl. Math., 69 (2016), 372-404.       
10 X. Hu and H. Wu, Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows, Discrete Contin. Dyn. Syst., 35 (2015), 3437-3461.       
11 B. Han, Global strong solution for the density dependent incompressible viscoelastic fluids in the critical $L^p$ framework, Nonlinear Anal., 132 (2016), 337-358.       
12 Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain, Commun. Math. Sci., 5 (2007), 595-616.       
13 Z. Lei, C. Liu and Y. Zhou, Global solutions of incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398.       
14 Z. Lei, On 2D viscoelasticity with small strain, Arch. Ration. Mech. Anal., 198 (2010), 13-37.       
15 Z. Lei, Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions, Discrete Contin. Dyn. Syst., 34 (2014), 2861-2871.       
16 Z. Lei and F. Wang, Uniform bound of the highest energy for the three dimensional incompressible elastodynamics, Arch. Ration. Mech. Anal., 216 (2015), 593-622.       
17 Z. Lei, Global well-posedness of incompressible elastodynamics in two dimensions, Comm. Pure Appl. Math., DOI: 10.1002/cpa.21633.       
18 F. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471.       
19 J. Qian and Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Rational Mech. Anal., 198 (2010), 835-868.       
20 P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, New York, 1990.
21 Y.-Z. Wang, F. G. Liu and Y. Z. Zhang, Global existence and asymptotic of solutions for a semi-linear wave equation, J. Math. Anal. Appl., 385 (2012), 836-853.       
22 Y.-Z. Wang and K. Y. Wang, Large time behavior of solutions to the nonlinear pseudo-parabolic equation, J. Math. Anal. Appl., 417 (2014), 272-292.       
23 Y.-Z. Wang and K. Y. Wang, Asymptotic behavior of classical solutions to the compressible Navier-Stokes-Poisson equations in three and higher dimensions, J. Differential Equations, 259 (2015), 25,-47.       
24 Y.-Z. Wang and K. Y. Wang, Long time behavior of solutions to the compressible MHD system in multi-dimensions, J. Math. Anal. Appl., 429 (2015), 1033-1058.       
25 S.-M. Zheng, Nonlinear Evolution Equations, CRC Press, New York, 2004.
26 F. Xu, X. Zhang, Y. Wu and L. Liu, The optimal convergence rates for the multi-dimensioanl compressible viscoelastic flows, Z. Angew. Math. Mech., 96 (2016), 1490-1504.       
27 T. Zhang and D. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p$ framework, SIAM J. Math. Anal., 44 (2012), 2266-2288.       

Go to top