`a`
Communications on Pure and Applied Analysis (CPAA)
 

Biharmonic systems involving multiple Rellich--type potentials and critical Rellich--Sobolev nonlinearities
Pages: 333 - 346, Issue 2, March 2018

doi:doi:10.3934/cpaa.2018019      Abstract        References        Full text (363.8K)           Related Articles

Dongsheng Kang - School of Mathematics and Statistics, South--Central University for Nationalities, Wuhan 430074, China (email)
Liangshun Xu - School of Mathematics and Statistics, South--Central University for Nationalities, Wuhan 430074, China (email)

1 A. Ambrosetti and H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.       
2 M. Bhakta and R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials, Nonlinear Anal., 75 (2012), 3836-3848.       
3 H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.       
4 P. Caldiroli and R. Musina, Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones, Milan J. Math., 79 (2011), 657-687.       
5 L. D'Ambrosio and E. Jannelli, Nonlinear critical problems for the biharmonic operator with Hardy potential, Calc. Var. Partial Differential Equations, 54 (2015), 365-396.       
6 V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Differential Equations, 31 (2006), 469-495.       
7 N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.       
8 E. Jannelli, Critical behavior for the polyharmonic operator with Hardy potential, Nonlinear Anal., 119 (2015), 443-456.       
9 E. Jannelli and A. Loiudice, Critical polyharmonic problems with singular nonlinearities, Nonlinear Anal., 110 (2014), 77-96.       
10 D. Kang, Concentration compactness principles for the systems of elliptic equations, Differ. Equ. Appl., 4 (2012), 435-444.       
11 D. Kang, Elliptic systems involving critical nonlinearities and different Hardy-type terms, J. Math. Anal. Appl., 420 (2014), 930-941.       
12 D. Kang and L. Xu, Asymptotic behavior and existence results for the biharmonic problems involving Rellich potentials, J. Math. Anal. Appl., 455 (2017), 1365-1382.       
13 D. Kang and J. Yu, Systems of critical elliptic equations involving Hardy-type terms and large ranges of parameters, Appl. Math. Lett., 46 (2015), 77-82.       
14 D. Kang and J. Yu, Minimizers to Rayleigh quotients of critical elliptic systems involving different Hardy-type terms, Appl. Math. Lett., 57 (2016), 97-103.       
15 E. Lieb and M. Loss, Analysis, 2nd edition, American Mathematical Society, Providence RI, 2001.       
16 P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case(I), Revista Mathematica Iberoamericana, 1 (1985), 145-201.       
17 P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case(II), Revista Mathematica Iberoamericana, 1 (1985), 45-121.       
18 F. Rellich, Perturbation Theory of Eigenvalue Problems, Courant Institute of Mathematical Sciences, New York University, New York, 1954.       
19 S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264.       
20 M. Willem, Analyse Fonctionnelle Élémentaire, Cassini Éditeurs, Paris, 2003.

Go to top