Biharmonic systems involving multiple Rellichtype
potentials and critical RellichSobolev nonlinearities
Pages: 333  346,
Issue 2,
March
2018
doi:doi:10.3934/cpaa.2018019 Abstract
References
Full text (363.8K)
Related Articles
Dongsheng Kang  School of Mathematics and Statistics, SouthCentral University for Nationalities, Wuhan 430074, China (email)
Liangshun Xu  School of Mathematics and Statistics, SouthCentral University for Nationalities, Wuhan 430074, China (email)
1 
A. Ambrosetti and H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349381. 

2 
M. Bhakta and R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials, Nonlinear Anal., 75 (2012), 38363848. 

3 
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437477. 

4 
P. Caldiroli and R. Musina, CaffarelliKohnNirenberg type inequalities for the weighted biharmonic operator in cones, Milan J. Math., 79 (2011), 657687. 

5 
L. D'Ambrosio and E. Jannelli, Nonlinear critical problems for the biharmonic operator with Hardy potential, Calc. Var. Partial Differential Equations, 54 (2015), 365396. 

6 
V. Felli and S. Terracini, Elliptic equations with multisingular inversesquare potentials and critical nonlinearity, Comm. Partial Differential Equations, 31 (2006), 469495. 

7 
N. Ghoussoub and C. Yuan, Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 57035743. 

8 
E. Jannelli, Critical behavior for the polyharmonic operator with Hardy potential, Nonlinear Anal., 119 (2015), 443456. 

9 
E. Jannelli and A. Loiudice, Critical polyharmonic problems with singular nonlinearities, Nonlinear Anal., 110 (2014), 7796. 

10 
D. Kang, Concentration compactness principles for the systems of elliptic equations, Differ. Equ. Appl., 4 (2012), 435444. 

11 
D. Kang, Elliptic systems involving critical nonlinearities and different Hardytype terms, J. Math. Anal. Appl., 420 (2014), 930941. 

12 
D. Kang and L. Xu, Asymptotic behavior and existence results for the biharmonic problems involving Rellich potentials, J. Math. Anal. Appl., 455 (2017), 13651382. 

13 
D. Kang and J. Yu, Systems of critical elliptic equations involving Hardytype terms and large ranges of parameters, Appl. Math. Lett., 46 (2015), 7782. 

14 
D. Kang and J. Yu, Minimizers to Rayleigh quotients of critical elliptic systems involving different Hardytype terms, Appl. Math. Lett., 57 (2016), 97103. 

15 
E. Lieb and M. Loss, Analysis, 2nd edition, American Mathematical Society, Providence RI, 2001. 

16 
P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case(I), Revista Mathematica Iberoamericana, 1 (1985), 145201. 

17 
P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case(II), Revista Mathematica Iberoamericana, 1 (1985), 45121. 

18 
F. Rellich, Perturbation Theory of Eigenvalue Problems, Courant Institute of Mathematical Sciences, New York University, New York, 1954. 

19 
S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241264. 

20 
M. Willem, Analyse Fonctionnelle Élémentaire, Cassini Éditeurs, Paris, 2003. 

Go to top
