`a`
Discrete and Continuous Dynamical Systems - Series S (DCDS-S)
 

New conservation forms and Lie algebras of Ermakov-Pinney equation
Pages: 735 - 746, Issue 4, August 2018

doi:10.3934/dcdss.2018046      Abstract        References        Full text (355.7K)           Related Articles

Özlem Orhan - Istanbul Technical University, Faculty of Science and Letters, Department of Mathematical Engineering, 34469 Maslak, Istanbul, Turkey (email)
Teoman Özer - Istanbul Technical University, Faculty of Civil Engineering, Division of Mechanics, 34469 Maslak, Istanbul, Turkey (email)

1 L. M. Berkovich, Factorisations and Transformations of Differential Equations, Methods and Applications. Regular and Chaotic Dynamics, Oxford, 2002.
2 C. Bertoni, F. Finelli and G. Venturi, Adiabatic invariants and scalar fields in a de Sitter space-time, Phys. Lett. A, 237 (1998), 331-336.       
3 G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, 1989.       
4 V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator, J. Math. Phys., 48 (2007), 032701, 12 pp.       
5 L. G. S. Duarte, S. E. S. Duarte, L. A. C. P. da Mota and J. E. F. Skea, Solving second-order ordinary differential equations by extending the Prelle-Singer method, J. Phys. A:Math. Gen., 34 (2001), 3015-3024.       
6 V. P. Ermakov, Univ. Izv. Kiev, 20, (1880).
7 F. Finelli, G. P. Vacca and G. Venturi, Phys. Rev. D, 58 (1998), 103514.
8 R. T. Herbst, The equivalence of linear and nonlinear differential equations, Proc. Am. Math. Soc., 7 (1956), 95-97.       
9 N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, vols, I-III, 1994.
10 N. H. Ibragimov, A. H. Kara and F. M. Mahomed, Lie-Backlund and Noether symmetries with applications, Nonlinear Dynamics, 15 (1998), 115-136.       
11 A. H. Kara, F. M. Mahomed, I. Naeem and C. Wafo Soh, Partial Noether operators and first integrals via partial Lagrangians, Math. Meth. Appl. Sci., Oxford, 30 (2007), 2079-2089.       
12 J. M. Levy-leblond, Conservation laws for Gauge Invariant Lagrangians in Classical Mechanic, American Journal of Physics, 11 (1978), 249-258.
13 P. G. Leach, Generalized Ermakov systems, Physics Letters, 158 (1991), 102-106.       
14 M. Molati and C. M. Khalique, Lie symmetry analysis of the time-variable coefficient B-BBM equation, Advances in Difference Equations, 2012 (2012), 8pp.       
15 C. Muriel and J. L. Romero, First integrals, integrating factors and $\lambda$-symmetries of second-order differential equations, Journal of Physics A, 42 (2009), 365207, 17 pp.       
16 E. Noether, Invariante Variationsprobleme, Nachr. König. Gesell. Wissen.,Göttingen, Math.-Phys. Kl. Heft, 2 (1918), 235-257. English translation in Transport Theory and Statistical Physics, 1 (1971), 186-207.       
17 M. C. Nucci and P. G. L. Leach, Jacobi's last multiplier and the complete symmetry group of the Ermakov-Pinney equation, Journal of Nonlinear Mathematical Physics, Oxford, 12 (2005), 305-320.       
18 P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, 1986.       
19 Ö. Orhan and T. Özer, Linearization properties, first integrals, nonlocal transformation for heat transfer equation, Int. J. Mod. Phys. B, 30 (2016), 1640024, 12 pp.       
20 L. V. Ovsiannikov, Group Analysis of Differential Equations, Moscow: Nauka, 1978.       
21 T. Özer, On symmetry group properties and general similarity forms of the Benney equations in the Lagrangian variables, Journal of Computational and Applied Mathematics, 169 (2004), 297-313.       
22 T. Özer, Symmetry group analysis and similarity solutions of variant nonlinear long wave equations, Chaos, Solitons Fractals, 33 (2008), 722-730.       
23 C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge, 2001.
24 E. Pinney, The nonlinear differential equation $\ddoty(x)+p(x)y+cy^{-3}=0$, Proceedings of the American Mathematical Society, Oxford, 1 (1950), p681.       
25 L. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Oxford University Press, Oxford, 2003.       
26 M. Prelle and M. Singer, Elemantary first integrals of differential equations, Trans. Am. Math. Soc., 279 (1983), 215-219.       
27 J. R. Ray and J. L. Reid, Noether's theorem and Ermakov systems for nonlinear equations of motion, Physics Letters, 59 (1980), 134-140.       

Go to top