`a`
Discrete and Continuous Dynamical Systems - Series S (DCDS-S)
 

Symmetry analysis of a Lane-Emden-Klein-Gordon-Fock system with central symmetry
Pages: 667 - 673, Issue 4, August 2018

doi:10.3934/dcdss.2018041      Abstract        References        Full text (304.5K)           Related Articles

Igor Freire - Centro de Matemática, Computação e Cognição, Universidade Federal do ABC - UFABC, Avenida dos Estados, 5001, Bairro Bangu, Santo André SP, 09.210-580, Brazil (email)
Ben Muatjetjeja - International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa (email)

1 M. A. Abdulwahhab, Nonlinear self-adjointness and conservation laws of Klein-Gordon-Fock equation with centra symmetry, Commun Nonlinear Sci Numer Simulat, 22 (2015), 1331-1340.       
2 G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer, 1989.       
3 Y. Bozhkov and A. C. G. Martins, Lie point symmetries of the Lane-Emden systems, J. Math. Anal. Appl., 294 (2004), 334-344.       
4 Y. Bozhkov and I. L. Freire, Symmetry analysis of the bidimensional Lane-Emden systems, J. Math. Anal. Appl., 388 (2012), 1279-1284.       
5 Y. Bozhkov and I. L. Freire, On the Lane-Emden system in dimension one, Appl. Math. Comp., 218 (2012), 10762-10766.       
6 S. Dimas and D. Tsoubelis, SYM: A new symmetry-finding package for Mathematica, in: Proceedings of the 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 2004 (2004), 64-70.
7 S. Dimas and D. Tsoubelis, A New Heuristic Algorithm for Solving Overdetermined Systems of PDEs in Mathematica, in: 6th International Conference on Symmetry in Nonlinear Mathematical Physics, Kiev, Ukraine, 2005.
8 I. L. Freire, P. L. da Silva and M. Torrisi, Lie and Noether symmetries for a class of fourth-order Emden-Fowler equations, J. Phys. A: Math. Theor., 46 (2013), 245206, 9 pp.       
9 I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Seventh Edition, Academic Press, New York, 2007.
10 N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley and Sons, 1999.       
11 B. A. Kochetov, Lie group symmetries and Riemann function of Klein-Gordon-Fock equation with central symmetry, Commun Nonlinear Sci Numer Simulat, 19 (2014), 1723-1728.       
12 T. E. Mogorosi, I. L. Freire, B. Muatjetjeja and C. M. Khalique, Group analysis of a hyperbolic Lane-Emden system, Appl. Math. Comp., 292 (2017), 156-164.
13 B. Muatjetjeja and C. M. Khalique, Lagrangian approach to a generalized coupled Lane-Emden system: Symmetries and first integrals, Commun Nonlinear Sci Numer Simulat, 15 (2010), 1166-1171.       
14 B. Muatjetjeja and C. M. Khalique, Lie group classification for a generalised coupled Lane-Emden system in one dimension, East. Asian. J. Appl. Math., 4 (2014), 301-311.       

Go to top