`a`
Discrete and Continuous Dynamical Systems - Series S (DCDS-S)
 

Conditional symmetries of nonlinear third-order ordinary differential equations
Pages: 655 - 666, Issue 4, August 2018

doi:10.3934/dcdss.2018040      Abstract        References        Full text (370.4K)           Related Articles

Aeeman Fatima - International Institute for Symmetry Analysis and Mathematical Modeling, North-West University, Ma keng Campus, P Bag X2046, Ma keng, South Africa (email)
F. M. Mahomed - School of Computer Science and Applied Mathematics, DST-NRF Centre of Excellence in Mathematical and Statistical Sciences, University of the Witwatersrand, Johannesburg, Wits 2050, South Africa (email)
Chaudry Masood Khalique - International Institute for Symmetry Analysis and Mathematical Modeling, North-West University, Mafikeng Campus, P Bag X2046, Mafikeng, South Korea (email)

1 B. Abraham-Shrauner, K. S. Govinder and P. G. L. Leach, Integration of second order ordinary differential equations not possessing Lie point symmetries, Phys. Lett. A, 203 (1995), 169-174.       
2 D. J. Arrigo and J. M. Hill, Nonclassical symmetries for nonlinear diffusion and absorption, Stud. Appl. Math., 94 (1995), 21-39.       
3 G. W. Bluman and J. D. Cole, The general similarity solution of the heat equation, J. Math. Mech., 18 (1969), 1025-1042.       
4 S. S. Chern, Sur la géométrie d'une équation différentielle du troisème ordre, CR Acad Sci Paris, 1937.
5 S. S. Chern, The geometry of the differential equation $ y''''=F(x,y,y'',y''')$, Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97-111.       
6 R. Cherniha and M. Henkel, On non-linear partial differential equations with an infinite-dimensional conditional symmetry, J. Math. Anal. Appl., 298 (2004), 487-500.       
7 R. Cherniha and O. Pliukhin, New conditional symmetries and exact solutions of reaction-diffusion-convection equations with exponential nonlinearities, J. Math. Anal. Appl., 403 (2013), 23-37.       
8 P. A. Clarkson, Nonclassical symmetry reductions of the Boussinesq equation, Chaos Solitons Fractals, 5 (1995), 2261-2301.       
9 P. A. Clarkson, Nonclassical symmetry reductions of nonlinear partial differential equations, Math. Comput. Model., 18 (1993), 45-68.       
10 P. L. Da Silva and I. L. Freire, Symmetry analysis of a class of autonomous even-order ordinary differential equations, IMA J. Appl. Math., 80 (2015), 1739-1758, arXiv:1311.0313v2 [math-ph] 7 march 2014.       
11 A. Fatima and F. M. Mahomed, Conditional symmetries for ordinary differential equations and applications, Int. J. Non-Linear Mech., 67 (2014), 95-105.
12 W. I. Fushchich, Conditional symmetry of equations of nonlinear mathematical physics, Ukrain. Math. Zh., 43 (1991), 1456-1470.       
13 G. Gaeta, Conditional symmetries and conditional constants of motion for dynamical systems, Report of the Centre de Physique Theorique Ecole Polytechnique, Palaiseau France, 1 (1993), 1-24.
14 A. Goriely, Integrability and Nonintegrability of Dynamical Systems, Advanced Series in Nonlinear Dynamics, 19. World Scientific Publishing Co., Inc., River Edge, NJ, 2001.       
15 G. Grebot, The characterization of third order ordinary differential equations admitting a transitive fibre-preserving point symmetry group, J. Math. Anal. Appl., 206 (1997), 364-388.       
16 N. H. Ibragimov and S. V. Meleshko, Linearization of third order ordinary differential equations by point and contact transformations, J. Math. Anal. Appl., 308 (2005), 266-289.       
17 N. H. Ibragimov, S. V. Meleshko and S. Suksern, Linearization of fourth order ordinary differential equation by point transformations, J. Phys. A, 41 (2008), 235206, 19 pp.       
18 A. H. Kara and F. M. Mahomed, A Basis of conservation laws for partial differential equations, J. Nonlinear Math. Phys., 9 (2002), 60-72.       
19 M. Kunzinger and R. O. Popovych, Generalized conditional symmetries of evolution equations, J. Math. Anal. Appl., 379 (2011), 444-460.       
20 P. G. L. Leach, Equivalence classes of second-order ordinary differential equations with three-dimensional Lie algebras of point symmetries and linearisation, J. Math. Anal. Appl., 284 (2003), 31-48.       
21 S. Lie, Lectures on Differential Equations with Known Infinitesimal Transformations, Leipzig, Teubner, 1981 (in German Lie's Lectures by G. Sheffers).
22 F. M. Mahomed, I. Naeem and A. Qadir, Conditional linearizability criteria for a system of third-order ordinary differential equations, Nonlinear Anal. B: Real World Appl., 10 (2009), 3404-3412.       
23 F. M. Mahomed, Symmetry group classification of ordinary differential equations: Survey of some results, Math. Meth. Appl. Sci., 30 (2007), 1995-2012.       
24 F. M. Mahomed and A. Qadir, Classification of ordinary differential equations by conditional linearizability and symmetry, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 573-584.       
25 F. M. Mahomed and A. Qadir, Conditional linearizability criteria for third order ordinary differential equations, J. Nonlinear Math. Phys., 15 (2008), 124-133.       
26 F. M. Mahomed and A. Qadir, Conditional linearizability of fourth-order semilinear ordinary differential equations, J. Nonlinear Math. Phys., 16 (2009), 165-178.       
27 F. M. Mahomed and P. G. L. Leach, Symmetry Lie algebras of $n$ order ordinary differential equations, J. Math. Anal. Appl., 151 (1990), 80-107.       
28 S. V. Meleshko, On linearization of third order ordinary differential equation. J. Phys. A, 39 (2006), 15135-15145.       
29 S. Neut and M. Petitot, La géométrie de l'équation $ y'''=f(x,y,y',y'')$. CR Acad. Sci. Paris Sér. I., 335 (2002), 515-518.       
30 P. J. Olver and E. M. Vorob'ev, Nonclassical and conditional symmetries, in: N.H. Ibragiminov (Ed.), CRC Handbook of Lie Group Analysis, vol. 3, CRC Press, Boca Raton, 1994.
31 E. Pucci and G. Saccomandi, Evolution equations, invariant surface conditions and functional separation of variables, Physica D: Nonlinear Phenomena, 139 (2000), 28-47.       
32 E. Pucci and G. Saccomandi, On the weak symmetry groups of partial differential equations, J. Math. Anal. Appl., 163 (1992), 588-598.       
33 E. Pucci, Similarity reductions of partial differential equations, J. Phys. A, 25 (1992), 2631-2640.       
34 W. Sarlet, P. G. L. Leach and F. Cantrijn, First integrals versus configurational invariants and a weak form of complete integrability, Physica D, 17 (1985), 87-98.       
35 S. Spichak and V. Stognii, Conditional symmetry and exact solutions of the Kramers equation, Nonlinear Math. Phys., 2 (1997), 450-454.       
36 S. Suksern, N. H. Ibragimov and S. V. Meleshko, Criteria for the fourth order ordinary differential equations to be linearizable by contact transformations, Common. Nonlinear Sci. Number. Simul., 14 (2009), 2619-2628.       
37 C. Wafo Soh and F. M. Mahomed, Linearization criteria for a system of second-order ordinary differential equations, Int. J. Non-Linear Mech., 36 (2001), 671-677.       

Go to top