`a`
Discrete and Continuous Dynamical Systems - Series S (DCDS-S)
 

Numerical investigation of Cattanneo-Christov heat flux in CNT suspended nanofluid flow over a stretching porous surface with suction and injection
Pages: 583 - 594, Issue 4, August 2018

doi:10.3934/dcdss.2018033      Abstract        References        Full text (543.4K)           Related Articles

Noreen Sher Akbar - DBS&H CEME, National University of Sciences and Technology, Islamabad, Pakistan (email)
Dharmendra Tripathi - Department of Mechanical Engineering, Manipal University Jaipur, Rajasthan-303007, India (email)
Zafar Hayat Khan - Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa, Pakistan (email)

1 N. S. Akbar, N. Kazmi, D. Tripathi and N. A. Mir, Study of heat transfer on physiological driven movement with CNT nanofluids and variable viscosity, Computer Methods and Programs in Biomedicine, 136 (2016), 21-29.
2 N. S. Akbar, Entropy generation analysis for a CNT suspension nanofluid in plumb ducts with peristalsis, Entropy, 17 (2015), 1411-1424.
3 N. S. Akbar, D. Tripathi, Z. H. Khan and O. A. Bég, A numerical study of magnetohydrodynamic transport of nanofluids over a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects, Chemical Physics Letters, 661 (2016), 20-30.
4 N. S. Akbar and Z. H. Khan, Effect of variable thermal conductivity and thermal radiation with CNTS suspended nanofluid over a stretching sheet with convective slip boundary conditions: Numerical study, Journal of Molecular Liquids, 222 (2016), 279-286.
5 N. S. Akbar, A. Ebaid and Z. H. Khan, Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet, Journal of Magnetism and Magnetic Materials, 382 (2015), 355-358.
6 M. M. Bhatti and M. M. Rashidi, Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet, Journal of Molecular Liquids, 221 (2016), 567-573.
7 M. M. Bhatti, T. Abbas, M. M. Rashidi and M. E. S. Ali, Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet, Entropy, 18 (2016), Paper No. 200, 14 pp.       
8 M. M. Bhatti, T. Abbas, M. M. Rashidi, M. E. S. Ali and Z. Yang, Entropy generation on MHD eyring-powell nanofluid through a permeable stretching surface, Entropy, 18 (2016), Paper No. 224, 14 pp.       
9 D. M. Camarano, F. A. Mansur, T. L. C. F. Araújo, G. C. Salles and A. P. Santos, Thermophysical properties of ethylene glycol mixture based CNT nanofluids, Journal of Physics: Conference Series, 733 (2016), 012015.
10 C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction, Mechanics Research Communications, 36 (2009), 481-486.       
11 M. Ciarletta and B. Straughan, Uniqueness and structural stability for the Cattaneo-Christov equations, Mechanics Research Communications, 37 (2010), 445-447.
12 M. Ciarletta, B. Straughan and V. Tibullo, Christov-Morro theory for non-isothermal diffusion, Nonlinear Analysis: Real World Applications, 13 (2012), 1224-1228.       
13 R. Ellahi, M. Hassan and A. Zeeshan, Study of natural convection MHD nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt-water solution, IEEE Transactions on Nanotechnology, 14 (2015), 726-734.
14 P. Estellé, S. Halelfadl and T. Maré, Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview, Journal of Thermal Enginnering, 1 (2015), 381-390.
15 S. A. M. Haddad, Thermal instability in Brinkman porous media with Cattaneo-Christov heat flux, International Journal of Heat and Mass Transfer, 68 (2014), 659-668.
16 S. Halelfadl, T. Maré and P. Estellé, Efficiency of carbon nanotubes water based nanofluids as coolants, Experimental Thermal and Fluid Science, 53 (2014), 104-110.
17 S. Han, L. Zheng, C. Li and X. Zhang, Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model, Applied Mathematics Letters, 38 (2014), 87-93.       
18 R. U. Haq, S. Nadeem, Z. H. Khan and N. F. M. Noor, Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes, Physica B: Condensed Matter, 457 (2015), 40-47.
19 T. Hayat, Z. Hussain, T. Muhammad and A. Alsaedi, Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness, Journal of Molecular Liquids, 221 (2016), 1121-1127.
20 T. Hayat, M. Imtiaz, A. Alsaedi and S. Almezal, On Cattaneo-Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous-heterogeneous reactions, Journal of Magnetism and Magnetic Materials, 401 (2016), 296-303.
21 N. Ishfaq, Z. H. Khan, W. A. Khan and R. J. Culham, Estimation of boundary-layer flow of a nanofluid past a stretching sheet: A revised model, Journal of Hydrodynamics, Ser. B, 28 (2016), 596-602.
22 R. Kandasamy, P. Loganathan and P. P. Arasu, Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection, Nuclear Engineering and Design, 241 (2011), 2053-2059.
23 W. A. Khan and I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, International Journal of Heat and Mass Transfer, 53 (2010), 2477-2483.
24 M. Khan and W. A. Khan, Three-dimensional flow and heat transfer to burgers fluid using Cattaneo-Christov heat flux model, Journal of Molecular Liquids, 221 (2016), 651-657.
25 W. A. Khan, M. Khan and A. S. Alshomrani, Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo-Christov double-diffusion: Applications of non-Fourier's heat and non-Fick's mass flux models, Journal of Molecular Liquids, 223 (2016), 1039-1047.
26 L. Liu, L. Zheng, F. Liu and X. Zhang, Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux, Communications in Nonlinear Science and Numerical Simulation, 38 (2016), 45-58.       
27 M. Mustafa, Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid, AIP Advances, 5 (2015), 047109.
28 S. Nadeem, R. Mehmood and N. S. and Akbar, Oblique Stagnation Point Flow of Carbon Nano Tube Based Fluid Over a Convective Surface, Journal of Computational and Theoretical Nanoscience, 12 (2015), 605-612.
29 S. Naramgari and C. Sulochana, MHD flow over a permeable stretching/shrinking sheet of a nanofluid with suction/injection, Alexandria Engineering Journal, 55 (2016), 819-827.
30 J. Qing, M. M. Bhatti, M. A. Abbas, M. M. Rashidi and M. E. S. Ali, Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface, Entropy, 18 (2016), 123.
31 W. Rashmi, M. Khalid, A. F. Ismail, R. Saidur and A. K. Rashid, Experimental and numerical investigation of heat transfer in CNT nanofluids, Journal of Experimental Nanoscience, 10 (2013), 545-563.
32 T. Salahuddin, M. Y. Malik, A. Hussain, S. Bilal and M. Awais, MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach, Journal of Magnetism and Magnetic Materials, 401 (2016), 991-997.
33 M. Sheikholeslami, Effect of uniform suction on nanofluid flow and heat transfer over a cylinder, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37 (2015), 1623-1633.
34 S. M. Sohel Murshed and C. A. Nieto de Castro, Superior thermal features of carbon nanotubes-based nanofluids-A review, Renewable and Sustainable Energy Reviews, 37 (2014), 155-167.
35 B. Straughan, Thermal convection with the Cattaneo-Christov model, International Journal of Heat and Mass Transfer, 53 (2010), 95-98.
36 C. Sulochana and N. Sandeep, Stagnation point flow and heat transfer behavior of Cu-water nanofluid towards horizontal and exponentially stretching/shrinking cylinders, Applied Nanoscience, 6 (2016), 451-459.
37 B. H. Thang, P. H. Khoi and P. N. Minh, A modified model for thermal conductivity of carbon nanotube-nanofluids, Physics of Fluids, 27 (2015), 032002.
38 B. H. Thang, P. H. Khoi and P. N. Minh, A modified model for thermal conductivity of carbon nanotube-nanofluids, Physics of Fluids, 27 (2015), 032002.
39 V. Tibullo and V. Zampoli, A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids, Mechanics Research Communications, 38 (2011), 77-79.
40 C. Y. Wang, Free convection on a vertical stretching surface, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 69 (1989), 418-420.

Go to top