Discrete and Continuous Dynamical Systems - Series S (DCDS-S)

Exact solutions of nonlinear partial differential equations
Pages: 577 - 582, Issue 4, August 2018

doi:10.3934/dcdss.2018032      Abstract        References        Full text (284.3K)           Related Articles

Barbara Abraham-Shrauner - Department of Electrical and Systems Engineering, Washington University, St. Louis, MO 63130, United States (email)

1 B. Abraham-Shrauner, Comment on Comment on "Superposition of elliptic functions as solutions for a large number of nonlinear equations", J. Math. Phys., 56 (2015), 112101, 2 pages.       
2 W. F. Ames, Ad-hoc Exact Technique for Nonlinear Partial Differential Equations, in Non-linear Partial Differential Equations, (ed. W.F. Ames) Academic Press, New York, (1967), 68-72.
3 D. Baldwin, U. Göktas, W. Hereman, L. Hong, R. S. Martino and J. C. Miller, Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs, J. Symbolic Comp., 37 (2004), 669-705.       
4 H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover Publications, New York, 1962.       
5 E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000), 212-218.       
6 W. Hereman, P. Banerjee, A. Korpel, G. Assanto, A. Van Immerzeele and A. Meerpoel, Exact solitary wave solutions of nonlinear evolution and wave equations using a new direct algebraic method, J. Phys. A: Math. Gen., 19 (1986), 607-628.       
7 F. T. Hioe, Superposition solutions of coupled nonlinear equations, Phys. Lett. A, 234 (1997), 351-357.       
8 L. Huibin and W. Kelin, Exact solutions for two nonlinear equations: I, J. Phys. A: Math. Gen., 23 (1990), 3923-3928.       
9 A. Karczewska, P. Rozmej and E. Infeld, Shallow-water solitons dynamics beyond the Korteweg-de Vries equation, Phys. Rev. E, 90 (2014), 012907, 8 pages.
10 A. Khare and U. Sukhatme, Linear superposition in nonlinear equations, Phys. Rev. Lett., 88 (2002), 244101, 4 pages.
11 A. Khare and A. Saxena, Linear superposition for a class of nonlinear equations, Phys. Lett. A, 377 (2013), 2761-2765.       
12 A. Khare and A. Saxena, Superposition of elliptic functions as solutions for a large number of nonlinear equations, J. Math. Phys., 55 (2014), 032701, 25 pages.       
13 W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60 (1992), 650-654.       
14 F. Verheest, C. P. Olivier and W. A. Hereman, Modified Korteweg-de Vries solitons at supercritical densities in two electron temperature plasmas, J. Plasma Phys., 82 (2016), 905820208, 13 pages.
15 M. Wang, Y. Zhou and Z. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 216 (1996), 67-75.
16 Y. M. Zhao, New Jacobi elliptic function solutions for the Zakharov equations, J. Appl. Math., 2012 (2012), Art. ID 854619, 16 pp.       

Go to top