`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

A Liouville-type theorem for cooperative parabolic systems
Pages: 823 - 833, Issue 2, February 2018

doi:10.3934/dcds.2018035      Abstract        References        Full text (353.1K)           Related Articles

Anh Tuan Duong - Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay District, Hanoi, Vietnam (email)
Quoc Hung Phan - Institute of Research and Development, Duy Tan University, Da Nang, Vietnam (email)

1 H. Amann, Global existence for semilinear parabolic systems, J. Reine Angew. Math., 360 (1985), 47-83.       
2 T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.       
3 J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, vol. 83 of Applied Mathematical Sciences, Springer-Verlag, New York, 1989.       
4 M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, in Équations aux dérivées partielles et applications, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, 189-198.       
5 M.-F. Bidaut-Véron and T. Raoux, Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, 21 (1996), 1035-1086.       
6 R. S. Cantrell, C. Cosner and V. Hutson, Permanence in ecological systems with spatial heterogeneity, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 533-559.       
7 E. N. Dancer, K. Wang and Z. Zhang, Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, J. Differential Equations, 251 (2011), 2737-2769.       
8 E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.       
9 M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction-diffusion system, J. Differential Equations, 89 (1991), 176-202.       
10 J. Földes and P. Poláčik, On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry, Discrete Contin. Dyn. Syst., 25 (2009), 133-157.       
11 B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.       
12 P. Glandsdorf and I. Prigogine, Thermodynamic Theory of Structure Stability and Fluctuations,, 1971.
13 Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb R^N$, Comm. Partial Differential Equations, 33 (2008), 263-284.       
14 H. Meinhardt, Models of Biological Pattern Formation, vol. 6, Academic Press London, 1982.
15 Q. H. Phan, Optimal Liouville-type theorems for a parabolic system, Discrete Contin. Dyn. Syst., 35 (2015), 399-409.       
16 Q. H. Phan and P. Souplet, A Liouville-type theorem for the 3-dimensional parabolic Gross-Pitaevskii and related systems, Math. Ann., 366 (2016), 1561-1585.       
17 P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.       
18 P. Quittner, Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure, Math. Ann., 364 (2016), 269-292.       
19 P. Quittner and P. Souplet, Superlinear Parabolic Problems, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007, Blow-up, global existence and steady states.
20 W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differential Equations, 161 (2000), 219-243.       
21 J. Wei and T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal., 190 (2008), 83-106.       

Go to top