`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Dispersive effects of weakly compressible and fast rotating inviscid fluids
Pages: 749 - 789, Issue 2, February 2018

doi:10.3934/dcds.2018033      Abstract        References        Full text (677.2K)           Related Articles

Van-Sang Ngo - Université de Rouen, Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS, 76801 Saint-Etienne du Rouvray, France (email)
Stefano Scrobogna - IMB, Université de Bordeaux, 351, cours de la Libération, 33405 Talence, France (email)

1 H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343, Springer, Heidelberg, 2011.       
2 G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1999.       
3 J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales de l'École Normale Supérieure, 14 (1981), 209-246.       
4 M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, in Séminaire sur les Équations aux Dérivées Partielles, 1993-1994, Exp. No. VIII, École Polytechnique, Palaiseau, (1994), 12pp.       
5 J.-Y. Chemin, Fluides parfaits incompressibles, Astérisque, 230 (1995), 177pp.       
6 J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity, Special issue for R. Temam's 60th birthday, M2AN. Mathematical Modelling and Numerical Analysis, 34 (2000), 315-335.       
7 J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their application, Collège de France Seminar, Studies in Mathematics and its Applications, 31 (2002), 171-191.       
8 J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical Geophysics: An Introduction to Rotating Fluids and to the Navier-Stokes Equations, Oxford University Press, 2006.       
9 J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes, Journal of Differential Equations, 121 (1992), 314-328.       
10 R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.       
11 R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.       
12 R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Sci. École Norm. Sup., 35 (2002), 27-75.       
13 B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, in Proceedings: Mathematical, Physical and Engineering Sciences, 455 (1999), 2271-2279.       
14 B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl., 78 (1999), 461-471.       
15 A. Dutrifoy, Examples of dispersive effects in non-viscous rotating fluids, Journal de Mathématiques Pures et Appliquées, 84 (2005), 331-356.       
16 A. Dutrifoy and T. Hmidi, The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data, Comm. Pure Appl. Math., 57 (2004), 1159-1177.       
17 F. Fanelli, Highly rotating viscous compressible fluids in presence of capillarity effects, Mathematische Annalen, 366 (2016), 981-1033.       
18 F. Fanelli, A singular limit problem for rotating capillary fluids with variable rotation axis, Journal of Mathematical Fluid Mechanics, 18 (2016), 625-658.       
19 E. Feireisl, I. Gallagher, D. Gerard-Varet and A. Novotný, Multi-scale analysis of compressible viscous and rotating fluids, Comm. Math. Phys., 314 (2012), 641-670.       
20 E. Feireisl, I. Gallagher and A. Novotný, A singular limit for compressible rotating fluids, SIAM J. Math. Anal., 44 (2012), 192-205.       
21 E. Feireisl and H. Petzeltová, Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow, Arch. Ration. Mech. Anal., 150 (1999), 77-96.       
22 E. Feireisl and H. Petzeltová, On compactness of solutions to the Navier-Stokes equations of compressible flow, J. Differential Equations, 163 (2000), 57-75.       
23 H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., 16 (1964), 269-315.       
24 I. Gallagher and L. Saint-Raymond, Weak convergence results for inhomogeneous rotating fluid equations, Journal d'Analyse Mathématique, 99 (2006), 1-34.       
25 D. Hoff, The zero-Mach limit of compressible flows, Comm. Math. Phys., 192 (1998), 543-554.       
26 N. Itaya, The existence and uniqueness of the solution of the equations describing compressible viscous fluid flow, Proc. Japan Acad., 46 (1970), 379-382.       
27 S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524.       
28 H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.       
29 H.-O. Kreiss, J. Lorenz and M. J. Naughton, Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations, Adv. in Appl. Math., 12 (1991), 187-214.       
30 L. D. Landau and E. M. Lifschitz, Lehrbuch Der Theoretischen Physik Band VI, fifth ed., Akademie-Verlag, Berlin, 1991, Hydrodynamik.       
31 C.-K. Lin, On the Incompressible Limit of the Compressible Navier-Stokes Equations, Ph.D. Thesis of The University of Arizona, 1992.       
32 P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1, Oxford Lecture Series in Mathematics and its Applications, vol. 3, The Clarendon Press, Oxford University Press, New York, 1996.       
33 P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2, Oxford Lecture Series in Mathematics and its Applications, vol. 10, The Clarendon Press, Oxford University Press, New York, 1998.       
34 P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77 (1998), 585-627.       
35 G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Archive for Rational Mechanics and Analysis, 158 (2001), 61-90.       
36 J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487-497.       
37 V.-S. Ngo, Rotating Fluids with small viscosity, International Mathematics Research Notices IMRN, 2009, 1860-1890.       
38 J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, 1987.
39 M. Reed and B. Simon, Methods of Modern Mathematical Physics. III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.       

Go to top