`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Nonexistence results for elliptic differential inequalities with a potential in bounded domains
Pages: 675 - 695, Issue 2, February 2018

doi:10.3934/dcds.2018029      Abstract        References        Full text (478.0K)           Related Articles

Dario D. Monticelli - Politecnico di Milano, Via Bonardi,9, Milano, 20133, Italy (email)
Fabio Punzo - Politecnico di Milano, Via Bonardi,9, Milano, 20133, Italy (email)

1 H. Berestycki, I. Capuzzo Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal., 4 (1994), 59-78.       
2 I. Birindelli and E. Mitidieri, Liouville theorems for elliptic inequalities and applications, Proc. Royal Soc. Edinburgh, Sect. A, 128 (1998), 1217-1247.       
3 L. D'Ambrosio and V. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224 (2010), 967-1020.       
4 L. D'Ambrosio and S. Lucente, Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Diff. Eq., 193 (2003), 511-541.       
5 D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.       
6 A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Am. Math. Soc., 36 (1999), 135-249.       
7 A. Grigor'yan and V. A. Kondratiev, On the existence of positive solutions of semilinear elliptic inequalities on Riemannian manifolds, in Around the research of Vladimir Maz'ya. II, volume 12 of Int. Math. Ser. (N. Y.), Springer, New York, (2010), 203-218.       
8 A. Grigor'yan and Y. Sun, On non-negative solutions of the inequality $\Delta u + u^\sigma \leq 0$ on Riemannian manifolds, Comm. Pure Appl. Math., 67 (2014), 1336-1352.       
9 P. Mastrolia, D. D. Monticelli and F. Punzo, Nonexistence results for elliptic differential inequalities with a potential on Riemannian manifolds, Calc. Var. Part. Diff. Eq., 54 (2015), 1345-1372.       
10 P. Mastrolia, D. D. Monticelli and F. Punzo, Nonexistence of solutions to parabolic differential inequalities with a potential on Riemannian manifolds, Math. Ann., 367 (2017), 929-963.       
11 V. Mitidieri and S. I. Pohozev, Absence of global positive solutions of quasilinear elliptic inequalities, Dokl. Akad. Nauk, 359 (1998), 456-460.       
12 V. Mitidieri and S. I. Pohozaev, Nonexistence of positive solutions for quasilinear elliptic problems in $\mathbb R^N$, Tr. Mat. Inst. Steklova, 227 (1999), 192-222.       
13 V. Mitidieri and S. I. Pohozaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, 234 (2001), 1-384.       
14 V. Mitidieri and S. I. Pohozaev, Towards a unified approach to nonexistence of solutions for a class of differential inequalities, Milan J. Math., 72 (2004), 129-162.       
15 D. D. Monticelli, Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators, J. Eur. Math. Soc., 12 (2010), 611-654.       
16 S. I. Pohozaev and A. Tesei, Nonexistence of local solutions to semilinear partial differential inequalities, Ann. Inst. H. Poinc. Anal. Non Lin., 21 (2004), 487-502.       
17 F. Punzo, Blow-up of solutions to semilinear parabolic equations on Riemannian manifolds with negative sectional curvature, J. Math. Anal. Appl., 387 (2012), 815-827.       
18 F. Punzo and A. Tesei, On a semilinear parabolic equation with inverse-square potential, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 21 (2010), 359-396.       
19 Y. Sun, Uniqueness results for nonnegative solutions of semilinear inequalities on Riemannian manifolds, J. Math. Anal. Appl., 419 (2014), 646-661.       
20 Y. Sun, On nonexistence of positive solutions of quasilinear inequality on Riemannian manifolds, Proc. Amer. Math. Soc., 143 (2015), 2969-2984.       

Go to top