Discrete and Continuous Dynamical Systems - Series A (DCDS-A)

Bounded and unbounded capillary surfaces derived from the catenoid
Pages: 589 - 614, Issue 2, February 2018

doi:10.3934/dcds.2018026      Abstract        References        Full text (473.0K)           Related Articles

Filippo Morabito - KAIST, Department of Mathematical Sciences, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea (email)

1 C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3 (1976), 157-175.       
2 G. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commun. Partial Diff. Equations, 13 (1988), 33-59.       
3 F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbbR^3$, Boundary Value Problems, 2014 (2014), 23pp.       
4 F. Morabito, Singly periodic minimal surfaces in a solid cylinder of $\mathbbR^3$, Discrete Continuous Dynamical Systems, 35 (2015), 4987-5001.       
5 F. Morabito, Free boundaries surfaces and Saddle Tower minimal surfaces in $\mathbb S^2 \times \mathbbR$, Journal of Mathematical Analysis and Applications, 443 (2016), 478-525.       
6 L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34.       
7 J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28 (1975), 189-200.       
8 N. Uraltseva, Solvability of the capillary problem, Vestnik Leningrad. Univ., 19 (1973), 54-64, 152.       

Go to top