`a`
Journal of Dynamics and Games (JDG)
 

Hyperopic topologies on $l^{\infty}$
Pages: 1 - 7, Issue 1, January 2018

doi:10.3934/jdg.2018001      Abstract        References        Full text (346.6K)           Related Articles

Paulo Klinger Monteiro - FGV EPGE, Escola Brasileira de Economia e Finanças, Rio de Janeiro RJ 22250-900, Brazil (email)
Jaime Orrillo - Graduate School of Economics, Catholic University of Brasilia 70790-160, Brazil (email)
Rudy José Rosas Bazán - Departamento de Ciencias - Sección Matemática, Ponti cal Catholic University of Peru, San Miguel, Lima, Peru (email)

1 C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: a Hitchhiker's Guide, Springer-Verlag, New York, 1999.       
2 A. Araujo, R. Novinski and M. R. Pascoa, General equilibrium wariness and efficient bubbles, Journal of Economic Theory, 146 (2011), 785-811.       
3 T. Bewley, Existence of equilibria in economies with infinitely many commodities, Journal of Economic Theory , 4 (1972), 514-540.       
4 J. Brown. and L. M. Lewis, Myopic economic agents, Econometrica, 49 (1981), 359-368.       
5 Ch. Gilles, Charges as equilibrium prices and asset bubbles, Journal of Mathematical Economics, 18 (1989), 155-167.       
6 Ch. Gilles and S. F. LeRoy, Bubbles and charges, International Economic Review, 33 (1992), 323-339.
7 J. Martinez-Legaz, On Weierstrass extreme value theorem, Optimization Letters, 8 (2014), 391-393.       
8 L. K. Raut, Myopic topologies on general commodity spaces, Journal of Economic Theory, 39 (1986), 358-367.       
9 P. Reny, On the existence of pure and mixed strategy Nash equilibria in discontinuous games, Econometrica, 67 (1999), 1029-1056.       
10 H. H. Schaefer, Topological Vector Spaces, second editon, GTM 3, Springer-Verlag, 1999.       
11 M. Sion, On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.       
12 J. Werner, Arbitrage, bubbles, and valuation, International Economic Review, 38 (1997), 453-464.

Go to top