`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

On homoclinic solutions for a second order difference equation with $ p-$Laplacian
Pages: 487 - 492, Issue 1, January 2018

doi:10.3934/dcdsb.2018033      Abstract        References        Full text (323.2K)           Related Articles

Robert Stegliński - Institute of Mathematics, Lodz University of Technology, Wolczanska 215, 90-924 Lodz, Poland (email)

1 G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009 (2009), Art. ID 670675, 20 pp.       
2 A. Iannizzotto and S. Tersian, Multiple homoclinic solutions for the discrete $p-$Laplacian via critical point theory, J. Math. Anal. Appl., 403 (2013), 173-182.       
3 L. Kong, Homoclinic solutions for a second order difference equation with $p-$Laplacian, Appl. Math. Comput., 247 (2014), 1113-1121.       
4 L. Kong, Homoclinic solutions for a higher order difference equation with $p-$Laplacian, Indag. Math., 27 (2016), 124-146.       
5 S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.       
6 B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401-410.       
7 R. Stegliński, On sequences of large homoclinic solutions for a difference equations on the integers, Adv. Difference Equ., 2016 (2016), 11pp.       
8 R. Stegliński, On sequences of large homoclinic solutions for a difference equations on the integers involving oscillatory nonlinearities, Electron. J. Qual. Theory Differ. Equ., 35 (2016), 1-11.       
9 G. Sun and A. Mai, Infinitely many homoclinic solutions for second order nonlinear difference equations with $p-$Laplacian, The Scientific World Journal, 2014 (2014), Article ID 276372, 6 pages.

Go to top