Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Does assortative mating lead to a polymorphic population? A toy model justification
Pages: 459 - 472, Issue 1, January 2018

doi:10.3934/dcdsb.2018031      Abstract        References        Full text (1511.3K)                  Related Articles

Ryszard Rudnicki - Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland (email)
Radosław Wieczorek - Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland (email)

1 N. H Barton, A. M. Etheridge and A. Véber, The infinitesimal model: Definition, derivation, and implications, Theor. Popul Biol., (2017).
2 P. Billingsley, Probability and Measure, John Wiley and Sons, New York, 1986.       
3 M. G. Bulmer, The Mathematical Theory of Quantitative Genetics, Clarendon Press, Oxford, 1980.       
4 J. A. Cañizo, J. A. Carrillo and S. Cuadrado, Measure solutions for some models in population dynamics, Acta Appl. Math., 123 (2013), 141-156.       
5 L. Desvillettes, P. E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous populations, Commun. Math. Sci., 6 (2008), 729-747.       
6 O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul Biol., 67 (2005), 257-271.
7 U. Dieckmann and M. Doebeli, On the origin of species by sympatric speciation, Nature, 400 (1999), 354-357.
8 M. Doebeli, H. J. Blok, O. Leimar and U. Dieckmann, Multimodal pattern formation in phenotype distributions of sexual populations, Proc. R. Soc. B, 274 (2007), 347-357.
9 R. A. Fisher, The correlations between relatives on the supposition of Mendelian inheritance, Trans. R. Soc. Edinburgh, 52 (1919), 399-433.
10 S. Gavrilets and C. R. B. Boake, On the evolution of premating isolation after a founder event, The American Naturalist, 152 (1998), 706-716.
11 P. Hinow, et al., Analysis of a model for transfer phenomena in biological populations, SIAM J. Appl. Math., 70 (2009), 40-62.       
12 P. Jabin and G. Raoul, On selection dynamics for competitive interactions, J. Math. Biol., 63 (2011), 493-517.       
13 F. A. Kondrashov and A. S. Kondrashov, Interactions among quantitative traits in the course of sympatric speciation, Nature, 400 (1999), 351-354.
14 C. Matessi, A. Gimelfarb and S. Gavrilets, Long-term buildup of reproductive isolation promoted by disruptive selection: How far does it go?, Selection, 2 (2001), 41-64.
15 J. Maynard Smith, Sympatric speciation, Am. Nat., 100 (1966), 637-650.
16 P. Michel, A singular asymptotic behavior of a transport equation, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 155-159.       
17 B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, Basel, 2007.       
18 J. Polechová and N. H. Barton, Speciation through competition: A critical review, Evolution, 59 (2005), 1194-1210.
19 O. Puebla, E. Bermingham and F. Guichard, Pairing dynamics and the origin of species, Proc. Biol. Sci., 279 (2012), 1085-1092.
20 R. Rudnicki and R. Wieczorek, On a nonlinear age-structured model of semelparous species, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2641-2656.       
21 R. Rudnicki and P. Zwoleński, Model of phenotypic evolution in hermaphroditic populations, J. Math. Biol., 70 (2015), 1295-1321.       
22 K. A. Schneider and R. Bürger, Does competitive divergence occur if assortative mating is costly?, Journal of Evolutionary Biology, 19 (2006), 570-588.
23 K. A. Schneider and S. Peischl, Evolution of assortative mating in a population expressing dominance, PLoS ONE, 6 (2011), e16821.
24 P. Zwoleński, Trait evolution in two-sex populations, Math. Mod. Nat. Phenom., 10 (2015), 163-181.       

Go to top