`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

The role of optimism and pessimism in the dynamics of emotional states
Pages: 401 - 423, Issue 1, January 2018

doi:10.3934/dcdsb.2018028      Abstract        References        Full text (871.0K)           Related Articles

Monika Joanna Piotrowska - Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland (email)
Joanna Górecka - College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland (email)
Urszula Foryś - Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland (email)

1 N. Bielczyk, M. Bodnar and U. Foryś, Delay can stabilize: Love affairs dynamics, Applied Mathematics and Computation, 219 (2012), 3923-3937.       
2 N. Bielczyk, U. Foryś and T. Płatkowski, Dynamical models of dyadic interactions with delay, J. Math. Soc., 37 (2013), 223-249.       
3 D. H. Felmlee and D. F. Greenberg, A dynamic systems model of dyadic interaction, Journal of Mathematical Sociology, 23 (1999), 155-180.
4 J. M. Gottman, J. D. Murray, C. C. Swanson, R. Tyson and K. R. Swanson, The Mathematics of Marriage: Dynamic Nonlinear Models, MIT Press, Cambridge, 2002.       
5 D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-291.
6 L. Liebovitch, V. Naudot, R. Vallacher, A. Nowak, L. Biu-Wrzosinska and P. Coleman, Dynamics of two-actor cooperation-competition conflict models, Physica A, 387 (2008), 6360-6378.
7 J. D. Murray, Mathematical Biology. I: An Introduction, Springer-Verlag, New York, 2002.       
8 S. Rinaldi, Love dynamics: The case of linear couples, Applied Mathematics and Computation, 95 (1998), 181-192.       
9 S. Rinaldi, F. Della Rosa and F. Dercole, Love and appeal in standard couples, International Journal of Bifurcation and Chaos, 20 (2010), 3473-3485.       
10 S. Rinaldi and A. Gragnani, Love dynamics between secure individuals: A modeling approach, Nonlinear Dynamics, Psychology, and Life Sciences, 2 (1998), 283-301.
11 S. Rinaldi, P. Landi and F. Della Rosa, Small discoveries can have great consequences in love affairs: The case of beauty and the beast, International Journal of Bifurcation and Chaos, 23 (2013), 1330038, 8pp.       
12 S. Rinaldi, P. Landi and F. Della Rossa, Temporary bluffing can be rewarding in social systems: The case of romantic relationships, The Journal of Mathematical Sociology, 39 (2015), 203-220.       
13 S. Rinaldi, F. D. Rossa and P. Landi, A mathematical model of pride and prejudice? Nonlinear dynamics, psychology, and life sciences, 18 (2014), 199-211.       
14 S. Rinaldi, F. Rossa Della, F. Dercole, A. Gragnani and P. Landi, Modeling Love Dynamics, vol. 89 of World Scientific Series on Nonlinear Science Series A, World Scientific Publishing Co.Pte. Ltd., 2016.       
15 S. Strogatz, Love affairs and differential equations, Math. Magazine, 65 (1988), p35.       
16 S. Strogatz, Nonlinear Dynamics and Chaos, Westwiev Press, 1994.

Go to top