`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Numerical treatment of contact problems with thermal effect
Pages: 387 - 400, Issue 1, January 2018

doi:10.3934/dcdsb.2018027      Abstract        References        Full text (536.4K)           Related Articles

Anna Ochal - Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science, Lojasiewicza 6, 30-348 Krakow, Poland (email)
Michal Jureczka - Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science, Lojasiewicza 6, 30-348 Krakow, Poland (email)

1 K. Bartosz, D. Danan and P. Szafraniec, Numerical analysis of a dynamic bilateral thermoviscoelastic contact problem with nonmonotone friction law, Computers & Mathematics with Applications, 73 (2017), 727-746.       
2 O. Chau and R. Oujja, Numerical treatment of a class of thermal contact problems, Mathematics and Computers in Simulation, 118 (2015), 163-176.       
3 L. Gasinki, A. Ochal and M. Shillor, Variational-hemivariational approach to a quasistatic viscoelastic problem with normal compliance, friction and material damage, Journal of Analysis and its Applications (ZAA), 34 (2015), 251-275.       
4 W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, American Mathematical Society and International Press, 2002.       
5 S. Migorski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, vol. 26, Springer, 2013.       
6 P.D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering, Springer-Verlag, 1993.       
7 M. Shillor, M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic Contact, Springer-Verlag, 2004.
8 M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, Lecture Note Series, vol. 398, Cambridge University Press, 2012.
9 E. Zeidler, Nonlinear Functional Analysis and Applications, II A/B, Springer, New York, 1990.       

Go to top