Qualitative properties of solutions of higher order difference equations with deviating arguments
Pages: 239  252,
Issue 1,
January
2018
doi:10.3934/dcdsb.2018016 Abstract
References
Full text (403.0K)
Related Articles
Alina Gleska  Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60965 Poznań, Poland (email)
Małgorzata Migda  Poznan University of Technology, Piotrowo 3A, 60965 Poznań, Poland (email)
1 
R. P. Agarwal, M. Bohner, S. R. Grace and D. O'Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005. 

2 
R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applications, Second Edition, Revised and Expanded, Marcel Dekker, New York, 2000. 

3 
J. Baštinec, L. Berezansky, J. Diblík and Z. Šmarda, A final result on the oscillation of solutions of the linear discrete delayed equation $\Delta x(n)=p(n)x(nk)$ with a positive coefficient, Abstract and Applied Analysis, 2011 (2011), Art. ID 586328, 28 pp. 

4 
G. E. Chatzarakis, R. Koplatadze and I. P. Stavroulakis, Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal., 68 (2008), 9941005. 

5 
G. E. Chatzarakis, M. Lafci and I. P. Stavroulakis, Oscillation results for difference equations with several oscillating coefficients, Applied Mathematics and Computation, 251 (2015), 8191. 

6 
G. E. Chatzarakis, Ch. G. Philos and I. P. Stavroulakis, On the oscillation of the solutions to linear difference equations with variable delay, Electron. J. Differ. Equ., 50 (2008), 115. 

7 
G. E. Chatzarakis and Ö. Öcalan, Oscillation of difference equations with nonmonotone retarded arguments, Applied Mathematics and Computation, 258 (2015), 6066. 

8 
G. E. Chatzarakis, H. Péics, S. Pinelas and I. P. Stavroulakis, Oscillation results for difference equations with oscillating coefficients, Advances in Difference Equations, 2015 (2015), 17pp. 

9 
L. H. Erbe and B. G. Zhang, Oscillation of discrete analogues of delay equations, Differential Integral Equations, 2 (1989), 300309. 

10 
G. Grzegorczyk and J. Werbowski, On oscillatory solutions of certain difference equations, Opuscula Mathematica, 26 (2006), 317326. 

11 
G. Grzegorczyk and J. Werbowski, Oscillation of higherorder linear difference equations, Comput. Math. Appl., 42 (2001), 711717. 

12 
I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, New York, 1991. 

13 
W. G. Kelley and A. C. Peterson, Difference Equations. An Introduction with Applications, Second edition, Harcourt/Academic Press, San Diego, CA, 2001. 

14 
G. Ladas, Ch. G. Philos and Y. G. Sficas, Sharp conditions for the oscillation of delay difference equations, J. Appl. Math. Simulation, 2 (1989), 101111. 

15 
J. Migda, Approximative solutions of difference equations, Electron. J. Qual. Theory Differ. Equ., 13 (2014), 26 pp. 

16 
M. Migda, Existence of nonoscillatory solutions of some higher order difference equations, Appl. Math. ENotes, 4 (2004), 3339. 

17 
M. Migda and J. Migda, On the asymptotic behavior of solutions of higher order nonlinear difference equations, Nonlinear Analysis, 47 (2001), 46874695. 

18 
M. Migda, Asymptotic properties of nonoscillatory solutions of higher order neutral difference equations, Opuscula Mathematica, 26 (2006), 507514. 

19 
W. Nowakowska and J. Werbowski, On connections between oscillatory solutions of functional, difference and differential equations, Fasc. Math., 44 (2010), 95106. 

20 
Ch. G. Philos, I. K. Purnaras and I. P. Stavroulakis, Sufficient conditions for the oscillation of delay difference equations, J. Difference Equ. Appl., 10 (2004), 419435. 

21 
J. Werbowski, Bounded oscillations of differential equations generated by deviating arguments, Utilitas Math., 31 (1987), 191198. 

22 
A. Wyrwińska, Oscillation criteria of a higher order linear difference equation, Bull. Inst. Math. Acad. Sinica, 22 (1994), 259266. 

Go to top
