`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Free boundary problems arising in biology
Pages: 193 - 202, Issue 1, January 2018

doi:10.3934/dcdsb.2018013      Abstract        References        Full text (355.7K)           Related Articles

Avner Friedman - The Ohio State University, Department of Mathematics, Columbus, OH 43210, United States (email)

1 C. S. Chou and A. Friedman, Mathematical Introduction to Mathematical Biology, Springer, 2016.       
2 A. Friedman, Free boundary problems in biology, Proceeding Royal Society, 373 (2015), 20140368 (16 pages).       
3 A. Friedman, Free boundary problems for systems of Stokes equations, Discrete and Continuous Dynamical Systems, 21 (2016), 1455-1468.       
4 A. Friedman and W. Hao, A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors, Bull. Math. Biololgy, 77 (2015), 758-781.       
5 A. Friedman, W. Hao and B. Hu, A free boundary problem for steady small plaques in the artery and their stability, J. Diff. Eqs., 259 (2015), 1227-1255.       
6 A. Friedman and W. Hao, Mathematical modeling of liver fibrosis, Math. Biosc. and Bioengineering, 14 (2017), 143-164.       
7 A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42 (2010), 2013-2040, arXiv:0910.0039.       
8 A. Friedman, B. Hu and C. Xue, A three dimensional model of wound healing: Analysis and computation, Discrete and Continuous Dynamical Systems, Ser. B, 17 (2012), 2691-2712.       
9 A. Friedman and C. Y. Kao, Mathematical Modeling of Biological Processes, Springer, 2014.       
10 A. Friedman and K. Y. Lam, On the stability of steady states in a granuloma model, J. Diff. Eqs., 256 (2014), 3743-3769.       
11 A. Friedman and K. Y. Lam, Analysis of a free boundary tumor model with angiogenesis, J. Diff. Eqs., 259 (2015), 7636-7661.       
12 A. Friedman, R. Leander and C. Y. Kao, Dynamics of radially symmetric granulomas, J. Math. Anal. Appl 412 (2014), 776-791.       
13 W. Hao and A. Friedman, The LDL-HDL profile determine the risk of atherosclerosis: A mathematical model, PLoS One, 9 (2014), e90497 (15 pages).
14 W. Hao, E. Crouser and A. Friedman, A mathematical model of sarcoidosis, PNAS, 111 (2014), 16065-16070.       
15 W. Hao, L. Schlesinger and A. Friedman, Modeling granulomas in response to infection in the lung, PLoS ONE, 11 (2016), e0148738.
16 C. Xue, A. Friedman and C. Sen, A mathematical model of ischemic cutaneous wounds, PNAS, 106 (2009), 16782-16787.

Go to top