Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Some remarks on the Gottman-Murray model of marital dissolution and time delays
Pages: 181 - 191, Issue 1, January 2018

doi:10.3934/dcdsb.2018012      Abstract        References        Full text (153.1K)           Related Articles

Urszula Foryś - Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland (email)

1 R. M. Baron, P. G. Amazeen and P. J. Beek, Local and global dynamics of social interactions, In R. R. Vallacher & A. Nowak (Eds.), Dynamical systems in social psychology, (1994), 111-138. San Diego, CA: Academic Press.
2 N. Bielczyk, M. Bodnar and U. Foryś, Delay can stabilize: Love affairs dynamics, Applied Mathematics and Computation, 219 (2012), 3923-3937.       
3 N. Bielczyk, U. Foryś and T. Płatkowski, Dynamical models of dyadic interactions with delay, Journal of Mathematical Sociology, 37 (2013), 223-249.       
4 K. L. Cooke and P. van den Driessche, On zeros of some transcendental equations, Funkcialaj Ekvacioj, 29 (1986), 77-90.       
5 F. Dercole and S. Rinaldi, Love stories can be unpredictable: Juliet at Jim in the vortex of life, Chaos, 24 (2014), 023134, 9pp.       
6 D. H. Felmlee and D. F. Greenberg, A dynamic systems model of dyadic interaction, Journal of Mathematical Sociology, 23 (1999), 155-180.
7 U. Foryś, Biological delay systems and the Mikhailov criterion of stability, Journal of Biological Systems, 12 (2004), 1-16.
8 U. Foryś, Time delays and the Gottman, Murray et al. model of marital interactions, In Proceedings of XXII National Conference, 2016.
9 J. M. Gottman, J. D. Murray, C. C. Swanson, R. Tyson and K. R. Swanson, The Mathematics of Marriage: Dynamic Nonlinear Models, Cambridge, MA: MIT Press, 2002.       
10 S. G. Krantz, Rouché's Theorem, In Handbook of Complex Variables. Boston, MA: Birkhäuser, 1999.
11 B. Latane and A. Nowak, Attitudes as catastrophes: From dimensions to categories with increasing involvement, In R. R. Vallacher & A. Nowak (Eds.), Dynamical systems in social psychology, (1994), 219-249. San Diego, CA: Academic Press.
12 R. Leek and B. Meeker, Exploring nonlinear path models via computer simulation, Social Science Computer Review, 14 (1996), 253-268.
13 X. Liao and J. Ran, Hopf bifurcation in love dynamical models with nonlinear couples and time delays, Chaos, Solitons, Fract., 31 (2007), 853-865.       
14 L. S. Liebovitch, V. Naudot, R. Vallacher, A. Nowak, L. Biu-Wrzosinska and P. Coleman, Dynamics of two-actor cooperation-conflict models, Physica A, 387 (2008), 6360-6378.
15 J. D. Murray, Mathematical Biology: Vol. 1. An Introduction, New York, NY: Springer-Verlag, 2002.       
16 A. Nowak and R. R. Vallacher, Dynamical Social Psychology, New York, NY: Guilford Press, 1998.
17 S. Rinaldi and A. Gragnani, Love dynamics between secure individuals: A modeling approach, Nonlinear Dynamics, Psychology, and Life Sciences, 2 (1998), 283-301.
18 S. Rinaldi, Love Dynamics: The case of linear couples, Applied Mathematics and Computation, 95 (1998), 181-192.       
19 S. Rinaldi, F. Della Rosa and F. Dercole, Love and appeal in standard couples, International Journal of Bifurcation and Chaos, 20 (2010), 2443-2451.
20 S. Rinaldi, P. Landi and F. Della Rosa, Small discoveries can have great consequences in love affairs: The case of Beauty and the Beast, International Journal of Bifurcation and Chaos, 23 (2013), 1330038, 8 pp.       
21 C. Rusbult and P. van Lange, Interdependence, interaction and relationships, Annual Review of Psychology, 54 (2003), 351-375.
22 J. Skonieczna and U. Foryś, Stability switches for some class of delayed population models, Applied Mathematics (Warsaw), 38 (2011), 51-66.       
23 S. Strogatz, Love affairs and differential equations, Mathematics Magazine, 65 (1988), p35.       
24 S. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, Reading, MA: Perseus Books, 1994.
25 A. Turowicz, Geometria zer wielomianów (in Polish), Warsaw, PWN, 1967.       

Go to top