`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

A global inversion theorem for functions with singular points
Pages: 173 - 180, Issue 1, January 2018

doi:10.3934/dcdsb.2018011      Abstract        References        Full text (321.2K)           Related Articles

Piotr Fijałkowski - Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu, ul. Kokoszków 71, 34-400 Nowy Targ, Poland (email)

1 P. Fijałkowski, Local inversion theorem for singular points, Nonlinear Anal., 54 (2003), 341-349.       
2 P. Fijałkowski, On a Certain Class of Locally Invertible Mapping and Their Applications, Wydawnictwo Uniwersytetu Łódzkiego, Łódź, 2003.
3 M. Galewski and M. Rădulescu, On a global implicit function theorem for locally Lipschitz maps via nonsmooth critical point theory, preprint, arXiv:1704.04280.
4 O. Gutú, On global inverse and implicit functions, preprint, arXiv:1508.07028.
5 J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906), 71-84.       
6 L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.
7 D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces, Adv. Nonlinear Stud., 12 (2012), 89-100.       
8 G. Katriel, Mountain pass theorems and global homeomorphism theorems, Annales de l'I. H. P., 11 (1994), 189-209.       
9 R. Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc., 200 (1974), 169-183.       
10 M. Rădulescu and S. Rădulescu, Global inversion theorems and applications to differential equations, Nonlinear Anal., 4 (1980), 951-965.       
11 M. Rădulescu and S. Rădulescu, An application of Hadamard-Levy's theorem to a scalar initial value problem, Proc. Amer. Math. Soc., 106 (1989), 139-143.       
12 G. Zampieri, Diffeomorphisms with Banach space domains, Nonlinear Anal., 19 (1992), 923-932.       

Go to top