`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Sensitivity of combined chemo- and antiangiogenic therapy results in different models describing cancer growth
Pages: 145 - 160, Issue 1, January 2018

doi:10.3934/dcdsb.2018009      Abstract        References        Full text (7208.9K)           Related Articles

Marzena Dolbniak - Systems Engineering Group, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland (email)
Malgorzata Kardynska - Systems Engineering Group, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland (email)
Jaroslaw Smieja - Systems Engineering Group, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland (email)

1 K. D. Argyri, D. D. Dionysiou, F. D. Misichroni and G. S. Stamatakos, Numerical simulation of vascular tumour growth under antiangiogenic treatment: Addressing the paradigm of single-agent bevacizumab therapy with the use of experimental data, Biology Direct, 11 (2016), p12.
2 F. Billy, J. Clairambault and O. Fercoq, Optimisation of cancer drug treatments using cell population dynamics, Mathematical Methods and Models in Biomedicine (eds. Ledzewicz U., Schättler H., Friedman A., Kashdan E.), (2013), 265-309.       
3 J. J. Cruz, Feedback Systems, McGraw-Hill, 1972.
4 B. C. Daniels, Y. J. Chen, J. P. Sethna, R. N. Gutenkunst and C. R. Myers, Sloppiness, robustness, and evolvability in systems biology, Current Opinion in Biotechnology, 19 (2008), 389-395.
5 A. D'Onofrio and A. Gandolfi, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy, Mathematical Medicine and Biology, 26 (2009), 63-95.
6 A. d'Onofrio and A. Gandolfi, Chemotherapy of vascularised tumours: Role of vessel density and the effect of vascular "pruning", Journal of Theoretical Biology, 264 (2010), 253-265.       
7 A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 222 (2009), 13-26.       
8 H. Enderling and M. A. Chaplain, Mathematical modeling of tumor growth and treatment, Current Pharmaceutical Design, 20 (2014), 4934-4940.
9 J. Folkman and M. Klagsbrun, Angiogenic factors, Science, 235 (1987), 442-447.
10 R. N. Gutenkunst, J. J. Watefall, F. P. Casey, K. S. Brown, C. R. Myers and J. P.Sethna, Universally sloppy parameter sensitivities in systems biology models, PLOS Computational Biology, 3 (2007), 1871-1878.       
11 P. Hahnfeldt, D. Panigrahy, J. and Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 19 (1999), 4770-4775.
12 http://drugs.com, Available: 2016-09-30.
13 M. Komorowski, M. J. Costa, D. A. Rand and M. P. H. Stumpf, Sensitivity, robustness, and identifiability in stochastic chemical kinetics models, PNAS, 108 (2011), 8645-8650.
14 U. Ledzewicz, H. Maurer and H. Schättler, Minimizing Tumor Volume for a Mathematical Model of Anti-Angiogenesis with Linear Pharmacokinetics, Recent Advances in Optimization and its Applications in Engineering (eds. Diehl M., Glineur F., Jarlebring E., Michiels W., (2010), 267-276.
15 U. Ledzewicz and H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), 1052-1079.       
16 B. K. Mannakee, A. P. Ragsdale, M. K. Transtrum and R. N. Gutenkunst , Sloppiness and the geometry of parameter space, Uncertainty in Biology: A Computational Modeling Approach (eds. Geris L., Gomez-Cabrero D.), 17 (2015), 271-299.
17 J. Poleszczuk, P. Hahnfeldt and H. Enderling, Therapeutic implications from sensitivity analysis of tumor angiogenesis models, PLoS One, 10 (2015), {e0120007}.
18 A. Saltelli, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, John Wiley & Sons, 2004.       
19 A. Saltelli, M. Ratto, S. Tarantola and F. Campolongo, Sensitivity analysis practices: Strategies for model-based inference, Reliability Engineering and System Safety, (2006), 1109-1125.
20 H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies - an Application of Geometric Methods, Interdisciplinary Applied Mathematics, 42. Springer, New York, 2015.       
21 A. Swierniak, M. Kimmel and J. Smieja, Mathematical modeling as a tool for planning anticancer therapy, European Journal of Pharmacology, 625 (2009), 108-121.
22 A. Swierniak, M. Kimmel, J. Smieja, K. Puszynski and K. Psiuk-Maksymowicz, System Engineering Approach to Planning Anticancer Therapies, Springer, 2016.       
23 N. S. Vasudev and A. R. Reynolds, Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions, Angiogenesis, 17 (2014), 471-494.
24 J. Welti, S. Loges, S. Dimmeler and P. Carmeliet, Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer, The Journal of Clinical Investigation, 8 (2013), 3190-3200.
25 J. Zalevsky, A. K. Chamberlain, H. M. Horton, S. Karki, I. W. Leung, T. J. Sproule, G. A. Lazar, D. C. Roopenian and J. R. Desjarlais, Enhanced antibody half-life improves in vivo activity, Nature Biotechnology, 28 (2010), 157-159.

Go to top