`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Asymptotic properties of delayed matrix exponential functions via Lambert function
Pages: 123 - 144, Issue 1, January 2018

doi:10.3934/dcdsb.2018008      Abstract        References        Full text (551.3K)           Related Articles

Josef Diblík - Brno University of Technology, CEITEC - Central European Institute of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic (email)
Zdeněk Svoboda - Brno University of Technology, CEITEC - Central European Institute of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic (email)

1 N. H. Abel, Beweis eines Ausdruckes, von welchen die Binomial-Formel ein einzelner Fall ist, J. Reine Angew. Math., 1 (1826), 159-160.       
2 A. Boichuk, J. Diblík, D. Khusainov and M. Růžičková, Fredholm's boundary-value problems for differential systems with a single delay, Nonlinear Anal., 72 (2010), 2251-2258.       
3 R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W Function, Adv. Comp. Math. 5 (1996), 329-359.       
4 F. R. Gantmacher, The Theory of Matrices, Volume 1, AMS Chelsea Publishing, 1998.       
5 D. Ya. Khusainov and G. V. Shuklin, Linear autonomous time-delay system with permutation matrices solving, Stud. Univ. Žilina, Math. Ser., 17 (2003), 101-108.       
6 D. Ya. Khusainov and G. V. Shuklin, On relative controllability in systems with pure delay, Int. Appl. Mech., 41 (2005), 210-221.       
7 V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.       
8 J. H. Lambert, Observationes variae in mathesin puram, Acta Helvetica, physico-mathematico-anatomico-botanico-medica, Band III, (1758), 128-168.
9 E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis, Birkhäuser Boston, Inc., Boston, MA, 1997.       

Go to top