`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Optimal control of normalized SIMR models with vaccination and treatment
Pages: 79 - 99, Issue 1, January 2018

doi:10.3934/dcdsb.2018006      Abstract        References        Full text (1384.1K)           Related Articles

Maria do Rosário de Pinho - SYSTEC, DEEC, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200–465 Porto, Portugal (email)
Helmut Maurer - Universität Münster, Institut für Numerische und Angewandte Mathematik , Einsteinstr. 62, 49143 Münster, Germany (email)
Hasnaa Zidani - ENSTA ParisTech - UMA, 828, boulevard des Maréchaux, 91120 Palaiseau, France (email)

1 M. S. Aronna, J. F. Bonnans, A. V. Dmitruk and P. A. Lotito, Quadratic orderconditions for bang-singular extremals, Numerical Algebra, Control and Optimization, 2 (2012), 511-546.       
2 M. Assellaou, O. Bokanowski, A. Desilles and H. Zidani, A Hamilton-Jacobi-Bellman Approach for the Optimal Control of an Abort Landing Problem, 55th IEEE Conference on Decision and Control, 2016.
3 M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems and Control: Foundations and Applications. Birkhäuser, Boston, 1997.       
4 M. H. A. Biswas, L. T. Paiva and M. d. R. de Pinho, A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014), 761-784.       
5 O. Bokanowski, A. Briani and H. Zidani, Minumum time control problems for non autonomous differential equations, Systems and Control Letters, 58 (2009), 742-746.       
6 O. Bokanowski, A. Désilles, H. Zidani and J. Zhao, ROC-HJ software "Reachability, Optimal Control, and Hamilton-Jacobi equations, http://uma.ensta-paristech.fr/soft/ROC-HJ (2016)}.
7 O. Bokanowski, N. Forcadel and H. Zidani, Reachability and minimal times for state constrained nonlinear problems without any controllability assumption, SIAM Journal on Control and Optimization, 48 (2010), 4292-4316.       
8 H. Bonnel and Y. C. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems, J. Optim. Theory Appl., 147 (2010), 93-112.       
9 C. Büskens, Optimierungsmethoden und Sensitivitätsanalyse Für Optimale Steuerprozesse mit Steuer- und Zustands-Beschränkungen, Dissertation, Institut für Numerische Mathematik, Universität Münster, Germany, 1998.
10 C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real-time control, Journal of Computational and Applied Mathematics, 120 (2000), 85-108.       
11 C. Büskens and H. Maurer, Sensitivity analysis and real-time optimization of parametric nonlinear programming problems, in: Online Optimization of Large Scale Systems (M. Grötschel, S. O. Krumke, J. Rambau, eds.), Springer-Verlag, Berlin, (2001), 3-16.       
12 C. Büskens and H. Maurer, Sensitivity analysis and real-time control of parametric optimal control problems using nonlinear programming methods, in: Online Optimization of Large Scale Systems (M. Grötschel, S. O. Krumke, J. Rambau, eds.), Springer-Verlag, Berlin, (2001), 57-68.       
13 M. d. R. de Pinho and F. N. Nogueira, On application of optimal control to SEIR normalized models: Pros and cons, Mathematical Biosciences and Engineering, 14 (2017), 111-126.       
14 G. Eichfelder, Adaptive Scalarization Methods in Multiobjective Optimization, Springer, Berlin, Heidelberg, 2008.       
15 M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations, SIAM, Philadelphia, PA, 2014.       
16 A. V. Fiacco, Introduction to Sensitivity and Stability Analysis, Academic Press, New York, London, 1983.       
17 R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Brooks-Cole Publishing Company, 1993.
18 L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Theory and Algorithms, Springer, 2011.       
19 M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley & Sons, Inc., New York-London-Sydney, 1966.       
20 H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.       
21 H. W. Hethcote, The basic epidemiology models: Models, expressions for $R_0$, parameter estimation, and applications, In: Mathematical Understanding of Infectious Disease Dynamics (S. Ma and Y. Xia, Eds.), 16 (2009), 1-61.       
22 Y. C. Kaya and H. Maurer, A numerical method for nonconvex multi-objective optimal control problems, Computational Optimization and Applications, 57 (2014), 685-702.       
23 A. J. Krener, The high order Maximal Principle and its application to singular extremals, SIAM J.on Control and Optimization, 15 (1977), 256-293.       
24 U. Ledzewicz and H. Schättler, On optimal singular control for a general SIR-model with vaccination and treatment, Discrete and Continuous Dynamical Systems, 2 (2011), 981-990.       
25 H. Maurer and M. d. R. de Pinho, Optimal control of epdimiological SEIR models with $L^1$ objective and control-state constraints, Pacific Journal of Optimization, 12 (2016), 415-436.       
26 H. Maurer, C. Büskens, J.-H. R. Kim and Y. Kaya, Optimization methods for the verification of second-order sufficient conditions for bang-bang controls, Optimal Control Methods and Applications, 26 (2005), 129-156.       
27 R. M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010), 67-81.       
28 N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control, Advances in Design and Control, 24. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012.       
29 L. S. Pontryagin, V. G. Boltyanski, R. V. Gramkrelidze and E. F. Miscenko, The Mathematical Theory of Optimal Processes (in Russian), Fitzmatgiz, Moscow; English translation: Pergamon Press, New York, 1964.       
30 C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, 77 (1988), 439-471.       
31 A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.       

Go to top