`a`
Numerical Algebra, Control and Optimization (NACO)
 

A study of numerical integration based on Legendre polynomial and RLS algorithm
Pages: 457 - 464, Issue 4, December 2017

doi:10.3934/naco.2017028      Abstract        References        Full text (291.3K)           Related Articles

Hongguang Xiao - Changsha University of Science and Technology, Changsha 410114, China (email)
Wen Tan - Changsha University of Science and Technology, Changsha 410114, China (email)
Dehua Xiang - Measurement and Testing Research Institute of Hunan Province, Changsha 410014, China (email)
Lifu Chen - Changsha University of Science and Technology, Changsha 410114, China (email)
Ning Li - Measurement and Testing Research Institute of Hunan Province, Changsha 410114, China (email)

1 S. Arora and S. Khot, Fitting algebraic curves to noisy data, Journal of Computer and System Sciences, 67 (2003), 325-340.       
2 K. Atkinson, An Introduction to Numerical Analysis, second ed., Wiley, 1989.       
3 E. Babolian, M. MasjedJamei and M. R. Eslahchi, On numerical improvement of Gauss-Legendre quadrature rule, Applied Mathematics and Computation, 160 (2005), 779-789.       
4 R. L. Burden and J. Douglas Faires, Numerical Analysis, Seventh ed., Thomson Learning, 2001.
5 F. Cazals and M. Pouget, Estimating differential quantities using polynomial fitting of osculating jets, Computer Aided Geometric Design, 22 (2005), 121-146.       
6 Hamza Chaggara and Wolfram Koepf, On linearization and connection coefficients for generalized Hermite polynomials, Journal of Computational and Applied Mathematics, 236 (2011), 65-73.       
7 W. N. Everitta, K. H. Kwonb, L. L. Littlejohnc and R. Wellman, Orthogonal polynomial solutions of linear ordinary differential equations, Journal of Computational and Applied Mathematics, 133 (2001), 85-109.       
8 G. H. Golub, Numerical methods for solving linear least squares problems, Numer. Math., 7 (1965), 206-216.       
9 G. H. Golub, Matrix decompositions and statistical calculations, inStatistical Computations (eds. R. C. Milton, J.A. Nedler), Academic Press, New York, (1969), 365-397.
10 S. M. Hashemiparast, Numerical integration using local Taylor expansions in nodes, Applied Mathematics and Computation, 192 (2007), 332-336.       
11 Siraj-ul-Islam, Imran Aziz, Fazal Haq, A comparative study of numerical integration based on Haar wavelets and hybrid functions, Computers and Mathematics with Applications, 59 (2010), 2026-2036.       
12 Ana Marco and José-Javier Martínez, Polynomial least squares fitting in the Bernstein basis, Linear Algebra and its Applications, 433 (2010), 1254-1264.       
13 Luis J. Morales-Mendoza, Hamurabi Gamboa-Rosales and Yuriy S. Shmaliy, A new class of discrete orthogonal polynomials for blind fitting of finite data, Signal Processing, 93 (2013), 1785-1793.
14 Tomasz Pander, New polynomial approach to myriad filter computation, Signal Processing, 90 (2010), 1991-2001.
15 C. F. So, S. C. Ng and S. H. Leung, Gradient based variable forgetting factor RLS algorithm, Signal Processing, 83 (2003), 1163-1175.       
16 Peter Strobach, Solving cubics by polynomial fitting, Journal of Computational and Applied Mathematics, 235 (2011), 3033-3052.       
17 Peter Strobach, A fitting algorithm for real coefficient polynomial rooting, Journal of Computational and Applied Mathematics, 236 (2012), 3238-3255.       
18 Li-yun Su, Prediction of multivariate chaotic time series with local polynomial fitting, Computers and Mathematics with Applications, 59 (2010), 737-744.       
19 Yegui Xiao, Liying Ma and Rabab Kreidieh Ward, Fast RLS Fourier analyzers capable of accommodating frequency mismatch, Signal Processing, 87 (2007), 2197-2212.
20 Zhe-zhao Zeng and Xu Zhou, A neural-network method based on RLS algorithm for solving special linear systems of equations, Journal of Computational Information Systems, 8 (2012), 2915-2920.

Go to top