`a`
Networks and Heterogeneous Media (NHM)
 

Capacity drop and traffic control for a second order traffic model
Pages: 663 - 681, Issue 4, December 2017

doi:10.3934/nhm.2017027      Abstract        References        Full text (646.0K)           Related Articles

Oliver Kolb - Department of Mathematics, University of Mannheim, 68131 Mannheim, Germany (email)
Simone Göttlich - University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany (email)
Paola Goatin - Inria Sophia Antipolis - Méditerranée , Université Côte d'Azur, Inria, CNRS, LJAD, 2004, route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France (email)

1 A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278.       
2 A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938.       
3 F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, Archive for Rational Mechanics and Analysis, 187 (2008), 185-220.       
4 C. Chalons and P. Goatin, Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Communications in Mathematical Sciences, 5 (2007), 533-551.       
5 M. L. Delle Monache, B. Piccoli and F. Rossi, Traffic Regulation via Controlled Speed Limit, SIAM Journal on Control and Optimization, 55 (2017), 2936-2958.
6 M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin and A. M. Bayen, A PDE-ODE model for a junction with ramp buffer, SIAM Journal on Applied Mathematics, 74 (2014), 22-39.       
7 S. Fan, M. Herty and B. Seibold, Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Networks and Heterogeneous Media, 9 (2014), 239-268.       
8 M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Communications in Partial Differential Equations, 31 (2006), 243-275.       
9 M. Garavello and B. Piccoli, Traffic Flow on Networks, Springfield, MO: American Institute of Mathematical Sciences (AIMS), 2006.       
10 P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Mathematical and Computer Modelling, 44 (2006), 287-303.       
11 P. Goatin, S. Göttlich and O. Kolb, Speed limit and ramp meter control for traffic flow networks, Engineering Optimization, 48 (2016), 1121-1144.       
12 J. M. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle, SIAM Journal on Applied Mathematics, 62 (2001), 729-745.       
13 B. Haut and G. Bastin, A second order model of road junctions in fluid models of traffic networks, Networks and Heterogeneous Media, 2 (2007), 227-253.       
14 A. Hegyi, B. D. Schutter and H. Hellendoorn, Optimal coordination of variable speed limits to suppress shock waves, IEEE Transactions on Intelligent Transportation Systems, 6 (2005), 102-112.
15 M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Networks and Heterogeneous Media, 1 (2006), 275-294.       
16 M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM Journal on Mathematical Analysis, 38 (2006), 595-616.       
17 W.-L. Jin, Q.-J. Gan and J.-P. Lebacque, A kinematic wave theory of capacity drop, Transportation Research Part B: Methodological, 81 (2015), 316-329.
18 W. Jin and H. Zhang, On the distribution schemes for determining flows through a merge, Transportation Research Part B: Methodological, 37 (2003), 521-540.
19 O. Kolb, Simulation and Optimization of Gas and Water Supply Networks, PhD thesis, TU Darmstadt, 2011.
20 O. Kolb and J. Lang, Simulation and continuous optimization, in "Mathematical Optimization of Water Networks" (eds. A. Martin, K. Klamroth, J. Lang, G. Leugering, A. Morsi, M. Oberlack, M. Ostrowski and R. Rosen), Springer Basel, 162 (2012), 17-33.       
21 L. Leclercq, V. L. Knoop, F. Marczak and S. P. Hoogendoorn, Capacity drops at merges: New analytical investigations, Transportation Research Part C: Emerging Technologies, 62 (2016), 171-181.
22 M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Royal Society of London Proceedings Series A, 229 (1955), 317-345.       
23 C. Parzani and C. Buisson, Second-order model and capacity drop at merge, Transportation Research Record: Journal of the Transportation Research Board, 2315 (2012), 25-34.
24 B. Piccoli, K. Han, T. L. Friesz, T. Yao and J. Tang, Second-order models and traffic data from mobile sensors, Transportation Research Part C: Emerging Technologies, 52 (2015), 32-56.
25 J. Reilly, S. Samaranayake, M. L. Delle Monache, W. Krichene, P. Goatin and A. M. Bayen, Adjoint-based optimization on a network of discretized scalar conservation laws with applications to coordinated ramp metering, Journal of Optimization Theory and Applications, 167 (2015), 733-760.       
26 F. Siebel, W. Mauser, S. Moutari and M. Rascle, Balanced vehicular traffic at a bottleneck, Mathematical and Computer Modelling, 49 (2009), 689-702.       
27 P. Spellucci, A new technique for inconsistent QP problems in the SQP method, Mathematical Methods of Operations Research, 47 (1998), 355-400.       
28 P. Spellucci, An SQP method for general nonlinear programs using only equality constrained subproblems, Mathematical Programming, 82 (1998), 413-448.       
29 A. Srivastava and N. Geroliminis, Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model, Transportation Research Part C: Emerging Technologies, 30 (2013), 161-177.
30 M. Treiber and A. Kesting, Traffic Flow Dynamics, Data, models and simulation, Translated by Treiber and Christian Thiemann, Springer, Heidelberg, 2013.       

Go to top