`a`
Networks and Heterogeneous Media (NHM)
 

Asymptotic problems and numerical schemes for traffic flows with unilateral constraints describing the formation of jams
Pages: 591 - 617, Issue 4, December 2017

doi:10.3934/nhm.2017024      Abstract        References        Full text (1568.9K)           Related Articles

Florent Berthelin - Université Côte d'Azur, Inria, CNRS, LJAD, Parc Valrose, 06108 Nice, France (email)
Thierry Goudon - Université Côte d'Azur, Inria, CNRS, LJAD, Parc Valrose, 06108 Nice, France (email)
Bastien Polizzi - Institut de Mécanique des Fluides de Toulouse, CNRS UMR 5502, France (email)
Magali Ribot - Université d'Orléans, MAPMO, UMR CNRS 7349, France (email)

1 A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278,       
2 A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.       
3 N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics, Disc. Cont. Dyn. Syst.-B, 19 (2014), 1869-1888.       
4 N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463.       
5 S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications, Oxford Mathematical Monographs, Oxford University Press, 2007.       
6 F. Berthelin and D. Broizat, A model for the evolution of traffic jams in multilane, Kinetic and Related Models, 5 (2012), 697-728.       
7 F. Berthelin, T. Goudon and S. Minjeaud, Multifluid flows: A kinetic approach, J. Sci. Comput., 66 (2016), 792-824.       
8 F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, Arch. Rational Mech. Anal., 187 (2008), 185-220.       
9 F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Frontiers in math., Birkhäuser, 2004.       
10 F. Bouchut, S. Jin and X. Li, Numerical approximations of pressureless and isothermal gas dynamics, SIAM J. Numer. Anal., 41 (2003), 135-158 (electronic).       
11 Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328.       
12 C. Chalons and P. Goatin, Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Commun. Math. Sci., 5 (2007), 533-551.       
13 C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling, Interfaces Free Bound., 10 (2008), 197-221.       
14 P. Colella, Glimm's method for gas dynamics, SIAM J. Sci. Statist. Comput., 3 (1982), 76-110.       
15 C. F. Daganzo, Requiem for second-order fluid approximations of traffic flow, Transportation Research Part B: Methodological, 29 (1995), 277-286.
16 P. Degond and M. Delitala, Modelling and simulation of vehicular traffic jam formation, Kinet. Relat. Models, 1 (2008), 279-293.       
17 P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equations, Commun. Comput. Phys., 10 (2011), 1-31.       
18 P. Degond and J. Hua, Self-organized hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., 237 (2013), 299-319.       
19 P. Degond, J. Hua and L. Navoret, Numerical simulations of the Euler system with congestion constraint, J. Comput. Phys., 230 (2011), 8057-8088.       
20 D. C. Gazis, R. Herman and R. W. Rothery, Nonlinear follow-the-leader models of traffic flow, Operations Research, 9 (1961), 545-567.       
21 J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Applied Math., 18 (1965), 697-715.       
22 E. Grenier, Existence globale pour le système des gaz sans pression, Comptes Rendus Acad. Sci., 321 (1995), 171-174.       
23 J. Jung, Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides, PhD thesis, Univ. Strasbourg, 2014.
24 A.-Y. Le Roux, Stability for some equations of gas dynamics, Math. Comput., 37 (1981), 307-320.       
25 M. J. Lighthill and G. B. Whitham, On kinematic waves. {II}. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.       
26 P.-L. Lions and N. Masmoudi, On a free boundary barotropic model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 373-410,       
27 T. P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys., 57 (1977), 135-148.       
28 B. Maury and A. Preux, Pressureless Euler equations with maximal density constraint: A time-splitting scheme, Technical report, Université Paris-Sud, 2017, 333-355, Available on https://hal.archives-ouvertes.fr/hal-01224008.
29 P. Nelson and A. Sopasakis, The Prigogine-Herman kinetic model predicts widely scattered traffic flow data at high concentrations, Transportation Research Part B: Methodological, 32 (1998), 589-604.
30 S. L. Paveri-Fontana, On Boltzmann-like treatments for traffic flow: A critical review of the basic model and an alternative proposal for dilute traffic analysis, Transportation Research, 9 (1975), 225-235.
31 H. J. Payne, Freflo: A Macroscopic Simulation Model of Freeway Traffic, Transportation Research Record.
32 I. Prigogine and R. Herman, Kinetic Theory of Vehicular Traffic, American Elsevier Publishing, 1971.
33 G. Puppo, M. Semplice, A. Tosin and G. Visconti, Fundamental diagrams in traffic flow: The case of heterogeneous kinetic models, Communications in Mathematical Sciences, 14 (2016), 643-669.       
34 J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.       
35 E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edition, Springer-Verlag, Berlin, 2009.       
36 R. Wegener and A. Klar, A kinetic model for vehicular traffic derived from a stochastic microscopic model, Transport Theory and Stat. Phys., 25 (1996), 785-798.
37 H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.

Go to top