Networks and Heterogeneous Media (NHM)

Sharp interface limit in a phase field model of cell motility
Pages: 551 - 590, Issue 4, December 2017

doi:10.3934/nhm.2017023      Abstract        References        Full text (883.9K)           Related Articles

Leonid Berlyand - Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States (email)
Mykhailo Potomkin - Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States (email)
Volodymyr Rybalko - Mathematical Division, B. I. Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, Kharkov 61103, Ukraine (email)

1 M. Alfaro, Generation, motion and thickness of transition layers for a nonlocal Allen-Cahn equation, Nonlinear Analysis, 72 (2010), 3324-3336.       
2 M. Alfaro and P. Alifrangis, Convergence of a mass conserving Allen-Cahn equation whose Lagrange multiplier is nonlocal and local, Interfaces Free Bound., 16 (2014), 243-268.       
3 S. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.
4 G. Barles and F. D. Lio, A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions, Interfaces Free Bound., 5 (2016), 239-274.       
5 E. Barnhart, K. C. Lee, G. M. Allen, J. A. Theriot and A. Mogilner, Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes, Proceedings of the National Academy of Sciences, 112 (2015), 5045-5050.
6 L. Berlyand, M. Potomkin and V. Rybalko, Phase-field model of cell motility: Traveling waves and sharp interface limit, Comptes Rendus Mathematique, 354 (2016), 986-992.       
7 K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Mathematical Notes, 20. Princeton University Press, Princeton, N.J., 1978. i+252 pp.       
8 M. Brassel and E. Bretin, A modified phase field approximation for mean curvature flow with conservation of the volume, Mathematical Methods in the Applied Sciences, 34 (2011), 1157-1180.       
9 L. Bronsard and B. Stoth, Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28 (1997), 769-807.       
10 X. Chen, D. Hilhorst and E. Logak, Asymptotic behavior of solutions of an Allen-Cahn equation with a nonlocal term, Nonlinear Analysis: Theory, Methods & Applications, 28 (1997), 1283-1298.       
11 X. Chen, D. Hilhorst and E. Logak, Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interfaces Free Bound., 12 (2010), 527-549.       
12 Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786.       
13 L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom., 33 (1991), 635-681.       
14 L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123.       
15 P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. vi+93 pp.       
16 L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394.       
17 D. Golovaty, The volume preserving motion by mean curvature as an asymptotic limit of reaction-diffusion equations, Q. of Appl. Math., 55 (1997), 243-298.       
18 M. Grayson, The heat equation shrinks embedded plane curves to points, J. Differential Geom., 26 (1987), 285-314.       
19 R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom., 17 (1982), 255-306.       
20 M. H. Holmes, Introduction to Perturbation Methods, $2^{nd}$ edition. Texts in Applied Mathematics, 20. Springer, New York, 2013. xviii+436 pp.       
21 G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266.       
22 K. Keren, Z. Pincus, G. M. Allen, E. Barnhart, G. Marriott, A. Mogilner and J. A. Theriot, Mechanism of shape determination in motile cells, Nature, 453 (2008), 475-480.
23 R. Kohn, F. Otto, M. Reznikoff and E. Vanden-Eijden, Action minimization and sharp-interface limits for the stochastic Allen-Cahn equation, Comm. Pure Appl. Math., 60 (2007), 393-438.       
24 F. D. Lio, C. I. Kim and D. Slepčev, Nonlocal front propagation problems in bounded domains with Neumann-type boundary conditions and applications, Asymptot. Anal., 37 (2004), 257-292.       
25 M. Mizuhara, L. Berlyand, V. Rybalko and L. Zhang, On an evolution equation in a cell motility model, Phys. D, 318/319 (2016), 12-25.       
26 L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142.       
27 A. Mogilner, Mathematics of cell motility: Have we got its number?, J. Math. Biol., 58 (2009), 105-134.       
28 P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc., 347 (1995), 1533-1589.       
29 F. Otto, H. Weber and G. Westdickenberg, Invariant measure of the stochastic Allen-Cahn equation: the regime of small noise and large system size, Electron. J. Probab., 19 (2014), 1-76.       
30 A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. viii+279 pp.       
31 J. Prúss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.       
32 P. Recho, T. Putelat and L. Truskinovsky, Mechanics of motility initiation and motility arrest in crawling cells, J. Mech. Phys. Solids, 84 (2015), 469-505.       
33 P. Recho and L. Truskinovsky, Asymmetry between pushing and pulling for crawling cells, Phys. Rev. E, 87 (2013), 022720.
34 B. Rubinstein, K. Jacobson and A. Mogilner, Multiscale two-dimensional modeling of a motile simple-shaped cell, Multiscale Model. Simul., 3 (2005), 413-439.       
35 J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48 (1992), 249-264.       
36 J. Rubinstein, P. Sternberg and J. B. Keller, Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math., 49 (1989), 116-133.       
37 S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. A, 31 (2011), 1427-1451.       
38 D. Shao, W. Rappel and H. Levine, Computational model for cell morphodynamics, Physical Review Letters, 105 (2010), 108104.
39 S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Westview press, 2014, xiii+513 pp.
40 F. Ziebert, S. Swaminathan and I. S. Aranson, Model for self-polarization and motility of keratocyte fragments, J. R. Soc. Interface, 9 (2011), 1084-1092.

Go to top