`a`
Networks and Heterogeneous Media (NHM)
 

Homogenization of Stokes system using Bloch waves
Pages: 525 - 550, Issue 4, December 2017

doi:10.3934/nhm.2017022      Abstract        References        Full text (525.9K)           Related Articles

Grégoire Allaire - Centre de Mathématiques Appliquées , Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France (email)
Tuhin Ghosh - Centre for Applicable Matematics, Tata Institute of Fundamental Research, Bangalore, India (email)
Muthusamy Vanninathan - Centre for Applicable Matematics, Tata Institute of Fundamental Research, Bangalore, India (email)

1 G. Allaire and M. Briane, Multiscale convergence and reiterated homogenisation, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 297-342.       
2 G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Engrg., 187 (2000), 91-117.       
3 G. Allaire and Y. Capdeboscq, Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface, Ann. Mat. Pura Appl. (4), 181 (2002), 247-282.       
4 G. Allaire, Y. Capdeboscq and A. Piatnitski, Homogenization and localization with an interface, Indiana Univ. Math. J., 52 (2003), 1413-1446.       
5 G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.       
6 G. Allaire, Shape Optimization by the Homogenization Method, volume 146 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002.       
7 G. Allaire, C. Conca, L. Friz and J. H. Ortega, On Bloch waves for the Stokes equations, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 1-28 (electronic).       
8 A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, volume 5 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, 1978.       
9 Y. Capdeboscq and M. S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements, M2AN Math. Model. Numer. Anal., 37 (2003), 227-240.       
10 H. J. Choe and H. Kim, Homogenization of the non-stationary Stokes equations with periodic viscosity, J. Korean Math. Soc., 46 (2009), 1041-1069.       
11 C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures, volume 38 of RAM: Research in Applied Mathematics, John Wiley & Sons, Ltd., Chichester; Masson, Paris, 1995.       
12 C. Conca, R. Orive and M. Vanninathan, Bloch approximation in homogenization and applications, SIAM J. Math. Anal., 33 (2002), 1166-1198 (electronic).       
13 C. Conca and M. Vanninathan, Homogenization of periodic structures via Bloch decomposition, SIAM J. Appl. Math., 57 (1997), 1639-1659.       
14 S. Sivaji Ganesh and M. Vanninathan, Bloch wave homogenization of scalar elliptic operators, Asymptot. Anal., 39 (2004), 15-44.       
15 V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, volume 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986.       
16 U. Hornung, Homogenization and Porous Media, Springer, New York, 1997.       
17 R. Morgan and I. Babuska, An approach for constructing families of homogenized equations for periodic media, SIAM J. Math. Anal., 22 (1991), 16-33.       
18 J. H. Ortega and E. Zuazua, Generic simplicity of the eigenvalues of the Stokes system in two space dimensions, Adv. Differential Equations, 6 (2001), 987-1023.       
19 M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, 1978.       
20 E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, volume 129 of Springer Lecture Notes in Physics, Springer-Verlag, Berlin, 1980.       
21 S. Sivaji Ganesh and M. Vanninathan, Bloch wave homogenization of linear elasticity system, ESAIM Control Optim. Calc. Var., 11 (2005), 542-573 (electronic).       
22 C. Wilcox, Theory of bloch waves, J. Anal. Math., 33 (1978), 146-167.       

Go to top