`a`
Big Data and Information Analytics (BDIA)
 

Selective further learning of hybrid ensemble for class imbalanced increment learning
Pages: 1 - 21, Issue 1, January 2017

doi:10.3934/bdia.2017005      Abstract        References        Full text (1017.7K)           Related Articles

Minlong Lin - School of Computer Science and Technology, University of Science and Technology of China, HeFei, AnHui 230027, China (email)
Ke Tang - School of Computer Science and Technology, University of Science and Technology of China, HeFei, AnHui 230027, China (email)

1 A. Asuncion and D. Newman, Uci machine learning repository, 2007.
2 G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds and D. B. Rosen, Fuzzy artmap: A neural network architecture for incremental supervised learning of analog multidimensional maps, IEEE Transactions on Neural Networks, 3 (1992), 698-713.
3 G. A. Carpenter, S. Grossberg and J. H. Reynolds, ARTMAP: Supervised Real-Time Learning and Classification of Nonstationary Data by a Self-Organizing Neural Network, Elsevier Science Ltd., 1991.
4 N. V. Chawla, N. Japkowicz and A. Kotcz, Editorial: Special issue on learning from imbalanced data sets, Acm Sigkdd Explorations Newsletter, 6 (2004), 1-6.
5 G. Ditzler, M. D. Muhlbaier and R. Polikar, Incremental learning of new classes in unbalanced datasets: Learn?+?+?.UDNC, International Workshop on Multiple Classifier Systems, Multiple Classifier Systems, (2010), 33-42.
6 G. Ditzler, R. Polikar and N. Chawla, An incremental learning algorithm for non-stationary environments and class imbalance, In International Conference on Pattern Recognition, (2010), 2997-3000.
7 Y. Freund and R. E. Schapire, A short introduction to boosting, Journal of Japanese Society for Artificial Intelligence, 14 (1999), 771-780.       
8 L. Fu, H.-H. Hsu and J. C. Principe, Incremental backpropagation learning networks, IEEE Transactions on Neural Networks, 7 (1996), 757-761.
9 H. He and E. A. Garcia, Learning from imbalanced data, IEEE Transactions on Knowledge and Data Engineering, 21 (2009), 1263-1284.
10 H. Inoue and H. Narihisa, Self-organizing neural grove and its applications, In IEEE International Joint Conference on Neural Networks, 2 (2005), 1205-1210.
11 N. Japkowicz and S. Stephen, The Class Imbalance Problem: A Systematic Study, IOS Press, 2002.
12 N. Kasabov, Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning, IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 31 (2001), 902-918.
13 M. Lin, K. Tang and X. Yao, Dynamic sampling approach to training neural networks for multiclass imbalance classification, IEEE Transactions on Neural Networks and Learning Systems, 24 (2013), 647-660.
14 Y. Liu and X. Yao, Simultaneous training of negatively correlated neural networks in an ensemble, IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 29 (1999), 716-725.
15 F. L. Minku, H. Inoue and X. Yao, Negative correlation in incremental learning, Natural Computing, 8 (2009), 289-320.       
16 M. Muhlbaier, A. Topalis and R. Polikar, Incremental learning from unbalanced data, In Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, IEEE, 2 (2004), 1057-1062.
17 M. Muhlbaier, A. Topalis and R. Polikar, Learn++.mt: A new approach to incremental learning, Lecture Notes in Computer Science, 3077 (2004), 52-61.
18 M. D. Muhlbaier, A. Topalis and R. Polikar, Learn ++.nc: combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes, IEEE Transactions on Neural Networks, 20 (2009), p152.
19 S Ozawa, S. Pang and N. Kasabov, Incremental learning of chunk data for online pattern classification systems, IEEE Trans Neural Netw, 19 (2008), 1061-1074.
20 R. Polikar, J. Byorick, S. Krause and A. Marino, Learn++: A classifier independent incremental learning algorithm for supervised neural networks, In International Joint Conference on Neural Networks, (2002), 1742-1747.
21 R. Polikar, L. Upda, S. S. Upda and V. Honavar, Learn++: an incremental learning algorithm for supervised neural networks, IEEE Transactions on Systems Man & Cybernetics Part C, 31 (2001), 497-508.
22 M. Salganicoff, Tolerating concept and sampling shift in lazy learning using prediction error context switching, Artificial Intelligence Review, 11 (1997), 133-155.
23 M. C. Su, J. Lee and K. L. Hsieh, A new artmap-based neural network for incremental learning, Neurocomputing, 69 (2006), 2284-2300.
24 Y. Sun, M. S. Kamel and Y. Wang, Boosting for learning multiple classes with imbalanced class distribution, In Data Mining, 2006. ICDM'06. Sixth International Conference on, IEEE, (2006), 592-602.
25 E. K. Tang, P. N. Suganthan and X. Yao, An analysis of diversity measures, Machine Learning, 65 (2006), 247-271.
26 K. Tang, M. Lin, F. L. Minku and X. Yao, Selective negative correlation learning approach to incremental learning, Neurocomputing, 72 (2009), 2796-2805.
27 W. X. Wen, H. Liu and A. Jennings, Self-generating neural networks, In International Joint Conference on Neural Networks, 4 (2002), 850-855.
28 G. Widmer and M. Kubat, Effective learning in dynamic environments by explicit context tracking, In Machine learning: ECML-93, Springer, 667 (1993), 227-243.
29 J. R. Williamson, Gaussian artmap: A neural network for fast incremental learning of noisy multidimensional maps, Neural Networks, 9 (1996), 881-897.

Go to top