Inversion of weighted divergent beam and cone transforms
Pages: 1071  1090,
Issue 6,
December
2017
doi:10.3934/ipi.2017049 Abstract
References
Full text (2271.0K)
Related Articles
Peter Kuchment  Mathematics Department, Texas A&M University, College Station, TX 778433368, United States (email)
Fatma Terzioglu  Department of Mathematics, Texas A&M University, College Station, TX 778433368, United States (email)
1 
M. Allmaras, D. P. Darrow, Y. Hristova, G. Kanschat and P. Kuchment, Detecting small low emission radiating sources, Inverse Probl. Imaging, 7 (2013), 4779. 

2 
M. Allmaras, W. Charlton, A. Ciabatti, Y. Hristova, P. Kuchment, A. Olson and J. Ragusa, Passive detection of small lowemission sources: Twodimensional numerical case studies, Nuclear Sci. and Eng., 184 (2016), 125150. 

3 
G. Ambartsoumian, Inversion of the Vline Radon transform in a disc and its applications in imaging, Comput. Math. Appl., 64 (2012), 260265. 

4 
G. Ambartsoumian and S. Moon, A series formula for inversion of the Vline Radon transform in a disc, Comput. Math. Appl., 66 (2013), 15671572. 

5 
R. Basko, G. L. Zeng and G. T. Gullberg, Application of spherical harmonics to image reconstruction for the Compton camera, Phys. Med. Biol., 43 (1998), 887894. 

6 
M. J. Cree and P. J. Bones, Towards direct reconstruction from a gamma camera based on Compton scattering, IEEE Trans. Med. Imaging, 13 (1994), 398409. 

7 
D. B. Everett, J. S. Fleming, R. W. Todd and J. M. Nightingale, Gammaradiation imaging system based on the Compton effect, Proc. IEE, 124 (1977), 9951000. 

8 
D. Finch and D. Solomon, A characterization of the range of the divergent beam Xray transform, SIAM J. Math. Anal. 14 (1983), 767771. 

9 
L. Florescu, V. A. Markel and J. C. Schotland, Inversion formulas for the brokenray Radon transform, Inverse Problems, 27 (2011), 025002, 13pp. 

10 
I. M Gel'fand, S. Gindikin and M. Graev, Selected Topics in Integral Geometry, (Transl. Math. Monogr. v. 220, Amer. Math. Soc.), Providence RI, 2003. 

11 
I. M. Gel'fand and G. E. Shilov, Generalized Functions: Volume I Properties and Operations, Academic, New York, 1964. 

12 
I. M. Gel'fand and A. B. Goncharov, Recovery of a compactly supported function starting from its integrals over lines intersecting a given set of points in space, (Russian)Dokl. Akad. Nauk SSSR, 290 (1986), 10371040; English translation in Soviet Math. Dokl., 34 (1987), 373376. 

13 
R. GouiaZarrad and G. Ambartsoumian, Exact inversion of the conical Radon transform with a fixed opening angle, Inverse Problems, 30 (2014), 045007, 12pp. 

14 
P. Grangeat, Mathematical framework of conebeam reconstruction via the first derivative of the Radon transform, Mathematical Methods in Tomography (Oberwolfach, 1990), Lecture Notes in Math., Springer, New York, 1497 (1991), 6697. 

15 
M. Haltmeier, Exact reconstruction formulas for a Radon transform over cones, Inverse Problems, 30 (2014), 035001, 8pp. 

16 
C. Hamaker, K. T. Smith, D. C. Solmon and S. L. Wagner, The divergent beam Xray transform, Rocky Mountain J. Math.,10 (1980), 253283. 

17 
S. Helgason, Integral Geometry and Radon Transforms, Springer, Berlin, 2011. 

18 
Y. Hristova, Mathematical Problems of Thermoacoustic and Compton Camera Imaging, Dissertation Texas A&M University, 2010. 

19 
Y. Hristova, Inversion of a Vline transform arising in emission tomography, Journal of Coupled Systems and Multiscale Dynamics, 3 (2015), 272277. 

20 
C.Y. Jung and S. Moon, Exact Inversion of the cone transform arising in an application of a Compton camera consisting of line detectors, SIAM J. Imaging Sciences, 9 (2016), 520536. 

21 
A. Katsevich, Theoretically exact filtered backprojectiontype inversion algorithm for spiral CT, SIAM J. Appl. Math., 62 (2002), 20122026. 

22 
A. Katsevich, An improved exact filtered backprojection algorithm for spiral computed tomography, Advances in Applied Mathematics, 32 (2004), 681697. 

23 
P. Kuchment, The Radon Transform and Medical Imaging, (CBMSNSF Regional Conf. Ser. in Appl. Math. 85), Society for Industrial and Applied Mathematics, Philadelphia, 2014. 

24 
P. Kuchment and F. Terzioglu, Threedimensional image reconstruction from Compton camera data, SIAM J. Imaging Sci., 9 (2016), 17081725. 

25 
V. Maxim, Filtered backprojection reconstruction and redundancy in Compton camera imaging, IEEE Trans. Image Process., 23 (2014), 332341. 

26 
S. Moon and M. Haltmeier. Analytic inversion of a conical Radon transform arising in application of Compton cameras on the cylinder, SIAM J. Imaging Sci., 10 (2017), 535557. 

27 
S. Moon, Inversion of the conical Radon transform with vertices on a surface of revolution arising in an application of a Compton camera, Inverse Problems, 33 (2017), 065002, 11pp. 

28 
F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, (Monogr. Math. Model. Comput. 5), Society for Industrial and Applied Mathematics, Philadelphia, 2001. 

29 
F. Natterer, The Mathematics of Computerized Tomography, (Classics in Applied Mathematics), Society for Industrial and Applied Mathematics, Philadelphia, 2001. 

30 
M. K. Nguyen, T. T. Truong and P. Grangeat, Radon transforms on a class of cones with fixed axis direction, J. Phys. A: Math. Gen., 38 (2005), 80038015. 

31 
P.O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM Rev., 46 (2004), 329345. 

32 
D. Schiefeneder and M. Haltmeier, The Radon Transform over Cones with Vertices on the Sphere and Orthogonal Axes, SIAM J. Appl. Math., 77 (2017), 13351351, arXiv:1606.03486. 

33 
M. Singh, An electronically collimated gamma camera for single photon emission computed tomography: I. Theoretical considerations and design criteria, Med. Phys., 10 (1983), 421427. 

34 
B. D. Smith, Image reconstruction from conebeam projections: Necessary and sufficient conditions and reconstruction methods, IEEE Trans. Med. Imag., 4 (1985), 1425. 

35 
B. Smith, Reconstruction methods and completeness conditions for two Compton data models, J. Opt. Soc. Am. A, 22 (2005), 445459. 

36 
B. Smith, Line reconstruction from Compton cameras: Data sets and a camera design, Opt. Eng., 50 (2011), 053204. 

37 
F. Terzioglu, Some inversion formulas for the cone transform, Inverse Problems, 31 (2015), 115010, 21pp. 

38 
T. T. Truong and M. K. Nguyen, New properties of the Vline Radon transform and their imaging applications, J. Phys. A, 48 (2015), 405204, 28pp. 

39 
H. K. Tuy, An inversion formula for conebeam reconstruction, SIAM J. Appl. Math., 43 (1983), 546552. 

40 
X. Xun, B. Mallick, R. Carroll and P. Kuchment, Bayesian approach to detection of small low emission sources, Inverse Problems, 27 (2011), 115009, 11pp. 

Go to top
