`a`
Inverse Problems and Imaging (IPI)
 

Accelerated Bregman operator splitting with backtracking
Pages: 1047 - 1070, Issue 6, December 2017

doi:10.3934/ipi.2017048      Abstract        References        Full text (1338.5K)           Related Articles

Yunmei Chen - Department of Mathematics, University of Florida, Gainesville, FL 32611, United States (email)
Xianqi Li - Department of Mathematics, University of Florida, Gainesville, FL 32611, United States (email)
Yuyuan Ouyang - Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, United States (email)
Eduardo Pasiliao - Munitions Directorate, Air Force Research Laboratory, Eglin AFB, FL 32542-9998, United States (email)

1 A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Transactions on Image Processing 18 (2009), 2419-2434.       
2 K. Block, M. Uecker and J. Frahm, Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint, Magnetic Resonance in Medicine, 57 (2007), 1086-1098.
3 S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends® in Machine Learning, 3 (2011), 1-122.
4 Y. Chen, W. Hager, F. Huang, D. Phan, X. Ye and W. Yin, Fast algorithms for image reconstruction with application to partially parallel MR imaging, SIAM Journal on Imaging Sciences, 5 (2012), 90-118.       
5 Y. Chen, W. Hager, M. Yashtini and X. Ye, Bregman operator splitting with variable stepsize for total variation image reconstruction, Computational Optimization and Applications, 54 (2013), 317-342.       
6 W. Deng and W. Yin, On the global and linear convergence of the generalized alternating direction method of multipliers, Journal of Scientific Computing, 66 (2012), 1-28.       
7 D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306.       
8 D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers & Mathematics with Applications, 2 (1976), 17-40.
9 R. Glowinski and A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires, Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, 9 (1975), 41-76.       
10 D. Goldfarb, S. Ma and K. Scheinberg, Fast multiple-splitting algorithms for convex optimization, SIAM Journal on Optimization, 22 (2012), 533-556.       
11 T. Goldstein, B. O'Donoghue, S. Setzer and R. Baraniuk, Fast alternating direction optimization methods, SIAM Journal on Imaging Sciences, 7 (2014), 1588-1623.       
12 T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.       
13 W. Hager, C. Ngo, M. Yashtini and H. Zhang, An alternating direction approximate Newton algorithm for ill-conditioned inverse problems with application to parallel MRI, Name of the Journal, 3 (2015), 139-162.       
14 W. Hager, M. Yashtini and H. Zhang, An \mathcalO(1/k) convergence rate for the variable stepsize Bregman operator splitting algorithm, SIAM Journal on Numerical Analysis, 54 (2016), 1535-1556.       
15 M. Hong and Z. Luo, On the linear convergence of the alternating direction method of multipliers, Mathematical Programming, 162 (2017), 165-199, arXiv:1208.3922.
16 C. Li, W. Yin, H. Jiang and Y. Zhang, An efficient augmented Lagrangian method with applications to total variation minimization, Computational Optimization and Applications, 56 (2013), 507-530.       
17 Q. Liu, J. Luo, S. Wang M. Xiao and M. Ye, An augmented Lagrangian multi-scale dictionary learning algorithm, EURASIP Journal on Advances in Signal Processing, 2011 (2011), p58.
18 M. Lustig, D. Donoho and J. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, 58 (2007), 1182-1195.
19 R. Monteiro and B. Svaiter, Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers, SIAM Journal on Optimization, 23 (2013), 475-507.       
20 Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical Programming, 103 (2005), 127-152.       
21 Y. Ouyang, Y. Chen, G. Lan and E. Pasiliao, An accelerated linearized alternating direction method of multipliers, SIAM Journal on Imaging Sciences, 8 (2015), 644-681.       
22 K. Pruessmann, M. Weiger, P. Börnert and P. Boesiger, Advances in sensitivity encoding with arbitrary k-space trajectories, Magnetic Resonance in Medicine, 46 (2001), 638-651.
23 K. Scheinberg, D. Goldfarb and X. Bai, Fast first-order methods for composite convex optimization with backtracking, Foundations of Computational Mathematics, 14 (2014), 389-417.       
24 L. Shepp and B. Logan, The Fourier reconstruction of a head section, IEEE Transactions on Nuclear Science, 21 (1974), 21-43.
25 Y. Wang, J. Yang, W. Yin and Y. Zhang A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248-272.       
26 B. Wohlberg, Efficient Algorithms for Convolutional Sparse Representations, IEEE Transactions on Image Processing, 25 (2016), 301-315.       
27 J. Yang, Y. Zhang and W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE Journal of Selected Topics in Signal Processing, 4 (2010), 288-297.
28 X. Ye, Y. Chen and F. Huang, Computational acceleration for MR image reconstruction in partially parallel imaging, IEEE Transactions on Medical Imaging, 30 (2011), 1055-1063.
29 X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM Journal on Imaging Sciences, 3 (2010), 253-276.       
30 X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration, Journal of Scientific Computing, 46 (2011), 20-46.       
31 M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report, (2008), 8-34.
32 M. Zhu, S. Wright and T. Chan, Duality-based algorithms for total-variation-regularized image restoration, Computational Optimization and Applications, 47 (2010), 377-400.       

Go to top